Skip to main content
Log in

Induction of Excision Repairable DNA Lesions in Lymphocytes Exposed to Lead and ALA In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Numbers of studies have been carried out on the potential of lead genotoxicity. The mechanisms of lead genotoxicity are not fully known but partly attributed to the formation of highly reactive oxygen metabolites (ROM). However, lead ions have no ability to generate ROM. In this study, we have investigated the ability of lead and ALA to induce excision repairable DNA lesions by using cytosine arabinoside or cytokinesis block micronucleus (ARA-C/CBMN) assay. N-methyl-N-nitrosourea was used as a positive control which is a mutagen and known to induce excision repair. The results of the ARA-C/CBMN assay show that ALA exposures have significantly (p < 0.01) increased the ratio of excision repairable DNA lesions in peripheral blood lymphocytes; however, lead have not. Accordingly, accumulation of ALA should be considered as an effective partner of lead induced DNA damage in lead exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rousseau MC, Parent ME, St-Pierre Y (2008) Potential health effects from non-specific stimulation of the immune function in early age: the example of BCG vaccination. Pediatr Allergy Immunol 19(5):438–448

    Article  PubMed  Google Scholar 

  2. Danadevi K, Rozati R, Saleha B, Banu P, Hanumanth R, Grover P (2003) DNA damage in workers exposed to lead using comet assay. Toxicology 187(2–3):183–193

    Article  PubMed  CAS  Google Scholar 

  3. Vaglenov A, Creus A, Laltchev S, Petkova V, Pavlova S, Marcos R (2001) Occupational exposure to lead and induction of genetic damage. Environ Health Perspect. 109(3):295–298

    Article  PubMed  CAS  Google Scholar 

  4. Pasha Shaik A, Sankar S, Reddy SC, Das PG, Jamil K (2006) Lead-induced genotoxicity in lymphocytes from peripheral blood samples of humans: in vitro studies. Drug Chem Toxicol. 29(1):111–124

    Article  PubMed  CAS  Google Scholar 

  5. Süzen HS, Duydu Y, Aydin A, Işimer A, Vural N (2003) Influence of the delta-aminolevulinic acid dehydratase (ALAD) polymorphism on biomarkers of lead exposure in Turkish storage battery manufacturing workers. Am. J. Ind. Med 43(2):165–171

    Article  PubMed  Google Scholar 

  6. International Agency for Research on Cancer (2006) IARC monographs on the evaluation of carcinogenic risks to humans. Inorganic and organic lead compounds, vol. 87. IARC, Lyon

    Google Scholar 

  7. Stoleski S, Karadzinska-Bislimovska J, Stikova E, Risteska-Kuc S, Mijakoski D, Minov J (2008) Adverse effects in workers exposed to inorganic lead. Arh Hig Rada Toksikol 59(1):19–29

    PubMed  CAS  Google Scholar 

  8. Hartwig A, Schlepegrell R, Beyersmann D (1990) Indirect mechanism of lead-induced genotoxicity in cultured mammalian cells. Mut Res 241(1):75–82

    Article  CAS  Google Scholar 

  9. Steenland K, Boffetta P (2000) Lead and cancer in humans: where are we now. Am J Ind Med 38(3):295–299

    Article  PubMed  CAS  Google Scholar 

  10. Restrepo HG, Sicard D, Torres MM (2000) DNA damage and repair in cells of lead exposed people. Am J Ind Med 38(3):330–334

    Article  PubMed  CAS  Google Scholar 

  11. Winder C, Bonin T (1993) The genotoxicity of lead. Mutat Res 285(1):117–124

    PubMed  CAS  Google Scholar 

  12. Mascıo P, Teıxeıra PC, Onukı J, Medeıros MHG, Dornemann D, Doukı T, Cadet J (2000) DNA damage by 5-aminolevulinic and 4,5-dioxovaleric acids in the presence of ferritin. Arch Biochem Biophys 373(2):368–374

    Article  PubMed  Google Scholar 

  13. Duydu Y, Süzen HS (2003) Influence of delta-aminolevulinic acid dehydratase (ALAD) polymorphism on the frequency of sister chromatid exchange (SCE) and the number of high-frequency cells (HFCs) in lymphocytes from lead-exposed workers. Mutat Res 540(1):79–88

    PubMed  CAS  Google Scholar 

  14. Ustundag A, Duydu Y (2007) The influence of melatonin and N-acetylcysteine in delta-aminolevulinic acid and lead induced genotoxicity in lymphocytes in vitro. Biol. Trace Elem. Res 117(1–3):53–64

    Article  PubMed  CAS  Google Scholar 

  15. Duydu Y, Dur A, Süzen HS (2005) Evaluation of increased proportion of cells with unusually high sister chromatid exchange counts as a cytogenetic biomarker for lead exposure. Biol Trace Elem Res 104(2):121–129

    Article  PubMed  CAS  Google Scholar 

  16. Duydu Y, Süzen HS, Aydin A, Cander O, Uysal H, Işimer A, Vural N (2001) Correlation between lead exposure indicators and sister chromatid exchange (SCE) frequencies in lymphocytes from inorganic lead exposed workers. Arch Environ Contam Toxicol 41(2):241–246

    Article  PubMed  CAS  Google Scholar 

  17. Moore MR, Goldberg A, Laıwah AACY (1987) Lead effects on the heme biosynthetic pathway. Annal New York Acad Sci 514:191–203

    Article  CAS  Google Scholar 

  18. Fiedler DM, Eckl PM, Krammer B (1996) Does delta-aminolaevulinic acid induce genotoxic effects. J Photochem Photobiol B 33(1):39–44

    Article  PubMed  CAS  Google Scholar 

  19. Neal R, Yang P, Fiechtl J, Yıldız D, Gurer H, Ercal N (1997) Pro-oxidant effects of delta-aminolevulinic acid (delta-ALA) on Chinese hamster ovary (CHO) cells. Toxicol Lett 91(3):169–178

    Article  PubMed  CAS  Google Scholar 

  20. Noriega GO, Tomaro ML, del Batlle AM (2003) Bilirubin is highly effective in preventing in vivo delta-aminolevulinic acid-induced oxidative cell damage. Biochim Biophys Acta 1638(2):173–178

    PubMed  CAS  Google Scholar 

  21. Valovicova, Gabelova (2004) Effect of cytosine arabinoside and hydroxyurea on micronucleus formation induced by model clastogens in Chinese hamster V79 cells. Neoplasma 51(6):442–449

    PubMed  CAS  Google Scholar 

  22. Fenech, Rinaldi J, Surralles J (1994) The origin of micronuclei induced by cytosine arabinoside and its synergistic interaction with hydroxyurea in human lymphocytes. Mutagenesis 9(3):273–277

    Article  PubMed  CAS  Google Scholar 

  23. Leopardi P, Zijno A, Marcon F, Conti L, Carere A, Verdina A, Galati R, Tomei F, Baccolo TP, Crebelli R (2003) Analysis of micronuclei in peripheral blood lymphocytes of traffic wardens: effects of exposure, metabolic genotypes, and inhibition of excision repair in vitro by ARA-C. Environ Mol Mutagen 41(2):126–130

    Article  PubMed  CAS  Google Scholar 

  24. Surralles J, Xamena N, Creus A, Marcos R (1995) The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mut Res 342(1–2):43–59

    CAS  Google Scholar 

  25. Fenech M, Neville S (1992) Conversion of excision-repairable DNA lesions to micronuclei within one cell cycle in human lymphocytes. Environ Mol Mutagen 19(1):27–36

    Article  PubMed  CAS  Google Scholar 

  26. Kirsch-Volders M, Fenech M (2001) Inclusion of micronuclei in non-divided mononuclear lymphocytes and necrosis/apoptosis may provide a more comprehensive cytokinesis block micronucleus assay for biomonitoring purposes. Mutagenesis 16(1):51–58

    Article  PubMed  CAS  Google Scholar 

  27. Fenech M (1993) The cytokinesis-block micronucleus technique and its application to genotoxicity studies in human populations. Environ Health Perspect 101(3):101–107

    Article  PubMed  CAS  Google Scholar 

  28. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mut Res 147:29–36

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ustundag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustundag, A., Duydu, Y. Induction of Excision Repairable DNA Lesions in Lymphocytes Exposed to Lead and ALA In Vitro. Biol Trace Elem Res 128, 31–37 (2009). https://doi.org/10.1007/s12011-008-8254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8254-0

Keywords

Navigation