We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Age-Related Changes of Elements in the Coronary Arteries of Monkeys in Comparison with Those of Humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To elucidate compositional changes of the coronary artery with aging, the authors investigated age-related changes of elements in the coronary arteries of rhesus and Japanese monkeys by direct chemical analysis in comparison with the coronary arteries of Japanese and Thai. Used monkeys consisted of 38 rhesus monkeys and 23 Japanese monkeys, ranging in age from newborn to 33 years. After perfusion with a fixative, the hearts were resected from the monkeys, and the anterior interventricular branches of the left coronary artery and the right coronary arteries were resected from the hearts. After ashing of the arteries, element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that the Ca and P contents did not increase in both the left and right coronary arteries of rhesus and Japanese monkeys at old age. The average contents of Ca and P decreased by 13% and 25% in the left coronary arteries more than 20 years of age in comparison with those below 20 years of age, whereas they decreased by 4% and 15% in the right coronary arteries more than 20 years of age in comparison with those below 20 years of age. This finding indicated that atherosclerosis scarcely occurred in both the left and right coronary arteries of rhesus and Japanese monkeys at old age. In contrast with monkeys, atherosclerosis occurred frequently in the coronary arteries of Japanese and Thai at old age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tohno Y, Tohno S, Minami T et al (1996) Age-related changes of mineral contents in the human thoracic aorta and in the human cerebral artery. Biol Trace Element Res 54:23–31

    Article  CAS  Google Scholar 

  2. Araki T, Tohno Y (1996) Age dependency of nanosecond fluorescence characteristics in human arteries. Front Med Biol Eng 7:265–273

    PubMed  CAS  Google Scholar 

  3. Tohno Y, Tohno S, Minami T et al (1997) Age-related changes of mineral contents in the human aorta and internal thoracic artery. Biol Trace Element Res 61:219–226

    Article  Google Scholar 

  4. Tohno S, Tohno Y, Minami T et al (1997) High accumulation of elements in the femoral artery. Biol Trace Element Res 57:27–37

    Article  CAS  Google Scholar 

  5. Tohno S, Tohno Y, Minami T et al (1997) Differential accumulation of calcium and phosphorus in aged human arteries. Acta Anat Nippon 72:451–454

    PubMed  CAS  Google Scholar 

  6. Tohno S, Tohno Y (1998) Age-related differences in calcium accumulation in human arteries. Cell Mol Biol 44:1253–1263

    PubMed  CAS  Google Scholar 

  7. Tohno S, Tohno Y, Minami T et al (1998) High accumulation of minerals in the human arteries of lower limb. Biol Trace Element Res 63:177–183

    Article  CAS  Google Scholar 

  8. Tohno S, Masuda M, Tohno Y et al (1999) High accumulation of calcium and phosphorus in human iliac arteries. Biol Trace Element Res 70:41–49

    Article  CAS  Google Scholar 

  9. Masuda M, Tohno S, Tohno Y et al (1999) Element content of human umbilical artery and vein in umbilical cord. Biol Trace Element Res 69:235–240

    Article  CAS  Google Scholar 

  10. Tohno Y, Tohno S, Tateyama Y et al (2001) Visual demonstration of calcium accumulation in human arteries of upper and lower limbs. Biol Trace Element Res 81:115–125

    Article  CAS  Google Scholar 

  11. Tohno Y, Tohno S, Moriwake Y et al (2001) Accumulation of calcium and phosphorus accompanied by increase of magnesium and decrease of sulfur in human arteries. Biol Trace Element Res 82:9–19

    Article  CAS  Google Scholar 

  12. Tohno Y, Tohno S, Moriwake Y et al (2001) Simultaneous accumulation of calcium, phosphorus, and magnesium in various human arteries. Biol Trace Element Res 82:21–28

    Article  CAS  Google Scholar 

  13. Tohno S, Tohno Y, Moriwake Y et al (2001) Quantitative changes of calcium, phosphorus, and magnesium in common iliac arteries with aging. Biol Trace Element Res 84:57–66

    Article  CAS  Google Scholar 

  14. Tohno Y, Tohno S, Minami T (2001) Age-related changes of calcium, phosphorus, and magnesium contents in human arteries and the correlations among their contents. Sogo Rinsho 50:3222–3234

    CAS  Google Scholar 

  15. Tohno S, Mahakkanukrauh P, Tohno Y et al (2002) High accumulation of calcium and phosphorus in the coronary artery of the Thai in comparison with the Japanese. Biol Trace Element Res 87:69–82

    Article  CAS  Google Scholar 

  16. Azuma C, Tohno S, Mahakkanukrauh P et al (2003) Different accumulation of elements in the rami of the coronary arteries of Thai. Biol Trace Element Res 95:211–218

    Article  CAS  Google Scholar 

  17. Mahakkanukrauh P, Tohno S, Tohno Y et al (2005) Age-related changes of elements in renal arteries of Thai and Japanese and the relationships among elements. Biol Trace Element Res 106:219–229

    Article  CAS  Google Scholar 

  18. Tohno Y, Tohno S, Mahakkanukrauh P et al (2006) Earlier accumulation of calcium, phosphorus, and magnesium in the coronary artery in comparison with the ascending aorta, aortic valve, and mitral valve. Biol Trace Element Res 112:31–42

    Article  CAS  Google Scholar 

  19. Ongkana N, Tohno S, Prieto IM et al (2007) Age-related changes of elements in the thoracic and abdominal aortas and coronary, common carotid, pulmonary, splenic, common iliac, and uterine arteries and relationships in elements among their arteries. Biol Trace Element Res 117:23–38

    Article  CAS  Google Scholar 

  20. Prieto IM, Ongkana N, Tohno S et al (2007) Moderate accumulation of calcium and phosphorus in the splenic artery with aging and low accumulation of those in the pulmonary artery with aging. Biol Trace Element Res 119:103–110

    Article  Google Scholar 

  21. Tohno S, Tohno Y, Hayashi M et al (2001) Accumulation of calcium in the arteries of Japanese monkey. Biol Trace Element Res 82:77–86

    Article  CAS  Google Scholar 

  22. Tohno S, Tohno Y, Hayashi M et al (2001) Accumulation of magnesium as well as calcium and phosphorus in Japanese monkey arteries with aging. Biol. Trace Element Res 84:81–92

    Article  CAS  Google Scholar 

  23. Tohno S, Tohno Y, Hayashi M et al (2003) Comparison of mineral contents between the arteries in upper and lower limbs of Japanese monkeys. Biol Trace Element Res 95:173–184

    Article  CAS  Google Scholar 

  24. Tohno S, Tohno Y, Hayashi M et al (2005) Comparison in calcium accumulation between the arteries of human and monkey. Biol Trace Element Res 106:211–217

    Article  CAS  Google Scholar 

  25. Tohno Y, Tohno S, Matsumoto H et al (1985) A trial of introducing soft X-ray apparatus into dissection practice for students. J Nara Med Assoc 36:365–370

    Google Scholar 

  26. Tohno Y, Tohno S, Mahakkanukrauh P et al (2001) Simultaneous accumulation of magnesium with calcium and phosphorus in aorta and iliac arteries of Thai. Biol Trace Element Res 84:19–35

    Article  CAS  Google Scholar 

  27. Weingand KW (1989) Recent advances in molecular pathology. Atherosclerosis research in cynomolgus monkeys (Macaca fascicularis). Exp Mol Pathol 50:1–15

    Article  PubMed  CAS  Google Scholar 

  28. Clarkson TB, Kaplan JR, Adams MR (1985) The role of individual differences in lipoprotein, artery wall, gender, and behavioral responses in the development of atherosclerosis. Ann NY Acad Sci 454:28–45

    Article  PubMed  CAS  Google Scholar 

  29. Cefalu W, Wagner JD (1997) Aging and atherosclerosis in both human and non-human primates. Age 20:15–28

    Article  Google Scholar 

  30. Sukhova GK, Williams JK, Labby P (2002) Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol. Arterioscler Thromb Vasc Biol 22:1452–1458

    Article  PubMed  CAS  Google Scholar 

  31. Cefalu WT, Wang ZQ, Bell-Farrow AD et al (2004) Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4-year intervention trial. J Gerontol A Biol Sc Med Sci 59:1007–1014

    Google Scholar 

  32. Prathap K (1973) Spontaneous aortic lesions in wild adult Malaysian long-tailed monkeys (Macaca irus). J Pathol 110:135–143

    Article  PubMed  CAS  Google Scholar 

  33. Prathap K, Lau KS (1972) Spontaneous and experimental arterial lesions in the Malaysian long-tailed monkey. In: Goldsmith E, Moor-Jankowski J (eds) Medical primatology, Part III. Karger, Basel, pp 343–349

    Google Scholar 

  34. Chawla KK, Murthy SDS, Chakravarti RN et al (1967) Arteriosclerosis and thrombosis in wild rhesus monkeys. Am Heart J 73:85–91

    Article  PubMed  CAS  Google Scholar 

  35. Kramsch DM, Hollander H (1968) Occlusive atherosclerotic disease of the coronary arteries in monkeys (Macaca irus) induced by diet. Exp Mol Pathol 9:1–22

    Article  PubMed  CAS  Google Scholar 

  36. Clarkson TB, Weingand KW, Kaplan JR et al (1987) Mechanisms of atherogenesis. Circulation 76(Suppl. 1):20–28

    Google Scholar 

  37. Clarkson TB, Anthony MS, Prichard RW (1984) The comparative pathology of nonhuman primate atherosclerosis. Life Sci [A] 79:61–78

    Google Scholar 

  38. Menetti F, Tohno S, Tohno Y et al (2005) Age-dependent decreases of calcium, phosphorus, sulfur, and zinc in the cardiac valves. Biol Trace Element Res 106:231–245

    Article  CAS  Google Scholar 

  39. Satoh H, Tohno S, Azuma C et al (2005) Age-related attenuation in the elements in monkey sino-atrial node. Biol Trace Element Res 107:43–51

    Article  CAS  Google Scholar 

  40. Tohno S, Tohno Y, Azuma C et al (2006) Decreases of calcium and phosphorus in monkey cardiac walls with development and aging. Biol Trace Element Res 110:233–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cooperation Research Program (2005–2007) of Primate Research Institute, Kyoto University. Portions of this work were supported by a Grant-in-Aid for Scientific Research no. 17200032 from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Tohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohno, Y., Tohno, S., Laleva, L. et al. Age-Related Changes of Elements in the Coronary Arteries of Monkeys in Comparison with Those of Humans. Biol Trace Elem Res 125, 141–153 (2008). https://doi.org/10.1007/s12011-008-8167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8167-y

Keywords

Navigation