Skip to main content

Advertisement

Log in

Anti-nociceptive and Anti-inflammatory Activities of Visnagin in Different Nociceptive and Inflammatory Mice Models

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pain management has been a severe public health issue throughout the world. Acute pain if not treated at the appropriate time can lead to chronic pain that can cause psychological and social distress. Nothing can be more rewarding than treating pain successfully for a physician. However, the use of chemical NSAIDs and opiate drugs has taken a toll on the patients with their unavoidable side effects. This study intends to explore the potential to treat pain by inhibiting nociception and inflammation with a safer, non-addictive, effective, and low-cost alternative agent from a natural source, visnagin. In vivo studies have been conducted using male Swiss albino mice as models for this research. Nociception was induced using different chemical and thermal stimuli such as acetic acid, glutamate, capsaicin, and formalin. To check for the anti-inflammatory properties, carrageenan was used to induce inflammation and the activity was assayed using peritoneal cavity leukocyte infiltration analysis and pro-inflammatory cytokine level comparison with the supplementation of visnagin at three different dosages. The findings of this study revealed that the visnagin treatment effectively attenuated the acetic acid-induced writhing response, glutamate-induced paw licking numbers, capsaicin-induced pain response, and formalin-induced biphasic licking incidences in the experimental mice models. Furthermore, the visnagin treatment remarkably suppressed the carrageenan-induced inflammation in mice, which is evident from the decreased leukocytes, mononuclear, and polymorphonuclear cell numbers in the mice. The levels of cytokines such as TNF-α, IL-1β, and IL-6 were effectively reduced by the visnagin treatment in the experimental mice. The results of open field test proved that the visnagin showed a better locomotor movement in the experimental mice. These results provided evidence for the potential activity of the visnagin against inflammatory and nociceptive responses in the mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Carr, F. B., & Zachariou, V. (2014). Nociception and pain: Lessons from optogenetics. Frontiers in Behavioral Neuroscience, 8(69), 1–6.

    Google Scholar 

  2. Dubin, A. E., & Patapoutian, A. (2010). Nociceptors: The sensors of the pain pathway. The Journal of Clinical Investigation, 120(11), 3760–3772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fürst, S. (1999). Transmitters involved in antinociception in the spinal cord. Brain Research Bulletin, 48(2), 129–141.

    Article  PubMed  Google Scholar 

  4. Cervero, F., & Merskey, H. (1996). What is a noxious stimulus? Pain Forum, 5(3), 157–161.

    Article  Google Scholar 

  5. Omoigui, S. (2007). The biochemical origin of pain: The origin of all pain is inflammation and the inflammatory response. Part 2 of 3–Inflammatory profile of pain syndromes. Medical Hypotheses, 69, 1169–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baron, R., Maier, C., & Attal, N. (2017). Peripheral neuropathic pain: A mechanism-related organizing principle based on sensory profiles. Pain, 158(2), 261–272.

    Article  PubMed  Google Scholar 

  7. Kim, K.-H., Seo, H.-J., Abdi, S., & Huh, B. (2020). All about pain pharmacology: What pain physicians should know. Korean J Pain, 33(2), 108–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maroon, J. C., Bost, J. W., & Maroon, A. (2010). Natural anti-inflammatory agents for pain relief. Surgical Neurology International, 1, 80.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li, J.W.-H., & Vederas, J. C. (2009). Drug discovery and natural products: End of an era or an endless frontier? Science, 325, 161–165.

    Article  PubMed  Google Scholar 

  10. Parveen, A., Kim, J. H., Oh, B. G., Subedi, L., Khan, Z., & Kim, S. Y. (2018). Phytochemicals: Target-based therapeutic strategies for diabetic retinopathy. Molecules, 23(7), 1519.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Akram, M., Asif, H. M., & Usmanghani, K. (2013). Anti-nociceptive activities of medicinal plants: A review. Journal of Pharmacy and Pharmaceutical Sciences, 4(1), 50–58.

    Google Scholar 

  12. Vanachayangkul, P., Byer, K., Khan, S., & Butterweck, V. (2010). An aqueous extract of Ammi visnaga fruits and its constituents khellin and visnagin prevent cell damage caused by oxalate in renal epithelial cells. Phytomedicine, 17, 653–658.

    Article  CAS  PubMed  Google Scholar 

  13. Bhagavathula, A. S., Al-Khatib, A. J. M., & Elnour, A. A. (2015). Ammi Visnaga in treatment of urolithiasis and hypertriglyceridemia. Pharmacognosy Research, 7(4), 397–400.

    Article  CAS  PubMed Central  Google Scholar 

  14. Rauwald, H. W., Brehm, O., & Odenthal, K. P. (1994). The involvement of a Ca2+ channel blocking mode of action in the pharmacology of Ammi visnaga fruits. Planta Medica, 60, 101–105.

    Article  CAS  PubMed  Google Scholar 

  15. Duarte, J., Perez-Vizcaino, F., Torres, A. I., Zarzuelo, A., Jimenez, J., & Tamargo, J. (1995). Vasodilator effects of visnagin in isolated rat vascular smooth muscle. European Journal of Pharmacology, 286, 115–122.

    Article  CAS  PubMed  Google Scholar 

  16. Hassan, J., Mhamed, M., & Mohammed, E. (2002). Hypoglycemic effect of aqueous extract of Ammi visnaga in normal and streptozotocin-induced diabetic rats. Journal of Herbal Pharmacotherapy, 2, 19–29.

    Article  Google Scholar 

  17. Lee, J., Jung, J., Park, S., Sim, Y., Kim, S., Ha, T., & Suh, H. (2010). Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. Archives of Pharmacal Research, 33, 1843–1850.

    Article  CAS  PubMed  Google Scholar 

  18. Kwon, M., Lee, J., Park, S., Sim, Y., Jung, J., Won, M., Kim, S., & Suh, H. (2010). Neuroprotective effect of visnagin on kainic acid-induced neuronal cell death in the mice hippocampus. The Korean Journal of Physiology and Pharmacology, 14, 257–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duarte, J., Torres, A. I., & Zarzuelo, A. (2000). Cardiovascular effects of visnagin on rats. Planta Medica, 66, 35–39.

    Article  CAS  PubMed  Google Scholar 

  20. Khalil, N., Bishr, M., Desouky, S., & Salama, O. (2020). Ammi Visnaga L., A potential medicinal plant: A review. Molecules, 25, 301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koster, R., Anderson, M., & de Beer, E. F. (1952). Acetic acid for analgesic screening. Federation Proceedings, 18, 412.

  22. Beirith, A., Santos, A. R., & Calixto, J. B. (2002). Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Research, 924(2), 219–228.

    Article  CAS  PubMed  Google Scholar 

  23. Luiz, A. P., Moura, J. D., Meotti, F. C., Guginski, G., Guimaraes, C. L., Azevedo, M. S., Rodrigues, A. L., & Santos, A. R. (2007). Antinociceptive action of ethanolic extract obtained from roots of Humirianthera ampla Miers. Journal of Ethnopharmacology, 114(3), 355–363.

    Article  CAS  PubMed  Google Scholar 

  24. Gomes, N. M., Rezende, C. M., Fontes, S. P., Matheus, M. E., & Fernandes, P. D. (2007). Antinociceptive activity of Amazonian Copaiba oils. Journal of Ethnopharmacology, 109(3), 486–492.

    Article  PubMed  Google Scholar 

  25. Vinegar, R., Truax, J. F., & Selph, J. L. (1973). Some quantitative temporal characteristics of carrageenan-induced pleurisy in the rat. Proceedings of the Society for Experimental Biology and Medicine, 143(3), 711–714.

    Article  CAS  PubMed  Google Scholar 

  26. Edwards, J. C., Sedgwick, A. D., & Willoughby, D. A. (1981). The formation of a structure with the features of synovial lining by subcutaneous injection of air: An in vivo tissue culture system. The Journal of Pathology, 134(2), 147–156.

    Article  CAS  PubMed  Google Scholar 

  27. De Mattos, E. S., Frederico, M. J., Colle, T. D., De Pieri, D. V., Peters, R. R., & Piovezan, A. P. (2007). Evaluation of antinociceptive activity of Casearia sylvestris and possible mechanism of action. Journal of Ethnopharmacology, 112(1), 1–6.

    Article  PubMed  Google Scholar 

  28. Gonzalez-Velasco, H. E., Perez-Gutierrez, M., Alonso-Castro, A. J., Zapata-Morales, J. R., Nino-Moreno, P. C., Campos-Xolalpa, N., & Gonzalez-Chavez, M. M. (2022). Anti-inflammatory and antinociceptive activities of the essential oil of Tagetes parryi A. Gray (Asteraceae) and Verbenone. Molecules, 27(9), 2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, M., & Thyagarajan, B. (2022). Pain pathways and potential new targets for pain relief. Biotechnology and Applied Biochemistry, 69(1), 110–123.

    Article  CAS  PubMed  Google Scholar 

  30. Gold, M. S., & Gebhart, G. F. (2010). Nociceptor sensitization in pain pathogenesis. Nature Medicine, 16(11), 1248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cashman, J. N. (1996). The mechanisms of action of NSAIDs in analgesia. Drugs, 52(Suppl. 5), 13–23.

    Article  CAS  PubMed  Google Scholar 

  32. Su, L. Y., Liu, Q., Jiao, L., & Yao, Y. G. (2021). Molecular mechanism of neuroprotective effect of melatonin on morphine addiction and analgesic tolerance: An update. Molecular Neurobiology, 58(9), 4628–4638.

    Article  CAS  PubMed  Google Scholar 

  33. Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology & Research, 3, 200–201.

  34. Taur, D. J., Waghmare, M. G., Bandal, R. S., & Patil, R. Y. (2011). Antinociceptive activity of Ricinus communis L. leaves. Asian Pacific Journal of Tropical Biomedicine, 1(2), 139–41. https://doi.org/10.1016/S2221-1691(11)60012-9

  35. Abu-Hashem, A. A., & Youssef, M. M. (2011). Synthesis of new visnagen and khellin furochromone pyrimidine derivatives and their anti-inflammatory and analgesic activity. Molecules, 16, 1956–1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fundytus, M. E. (2001). Glutamate receptors and nociception implications for the drug treatment of pain. CNS Drugs, 15(1), 29–58.

    Article  CAS  PubMed  Google Scholar 

  37. Frias, B., & Merighi, A. (2016). Review capsaicin, nociception and pain. Molecules, 21, 797.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Karim, N., Khan, I., Khan, W., Khan, I., Khan, A., Halim, S. A., Khan, H., Hussain, J., & Al-Harrasi, A. (2019). Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: An in-vitro, in-vivo, and in-silico approach. Frontiers in Immunology, 26(10), 581.

    Article  Google Scholar 

  39. Lee, J. K., Jung, J. S., Park, S. H., Park, S. H., Sim, Y. B., Kim, S. M., Ha, T. S., & Suh, H. W. (2010). Anti-inflammatory effect of visnagin in lipopolysaccharide-stimulated BV-2 microglial cells. Archives of Pharmacal Research, 33(11), 1843–1850.

    Article  CAS  PubMed  Google Scholar 

  40. El-Sawy, E. R., Ebaid, M. S., Abo-Salem, H. M., Al-Sehemi, A. G., & Mandour, A. H. (2014). Synthesis, anti-inflammatory, analgesic and anticonvulsant activities of some new 4,6-dimethoxy-5-(heterocycles) benzofuran starting from naturally occurring visnagin. Arabian Journal of Chemistry, 7(6), 914–923.

    Article  CAS  Google Scholar 

  41. Khalil, H. S., Sedky, N. K., Amin, K. M., Abd Elhafez, O. M., & Arafa, R. K. (2019). Visnagin and benzofuran scaffold-based molecules as selective cyclooxygenase-2 inhibitors with anti-inflammatory and analgesic properties: Design, synthesis and molecular docking. Future Medicinal Chemistry, 11(7), 659–676.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiaobing Qi and Sattam Khulaif Alenezi drafted the manuscript; Ibrahim M. Alanazi and Mohammed S. Alshammari drafted the manuscript; Ibrahim Abdel Aziz Ibrahim and Kalaivani Aiyasamy conceptualized and corrected/revised the manuscript.

Corresponding author

Correspondence to Ibrahim Abdel Aziz Ibrahim.

Ethics declarations

Ethics Approval

All the animal experiments were done under the guidelines of the Institutional Animal Ethics Committee (Animal ethical approval number: IMBH20211128).

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Aiyasamy, K., Alenezi, S.K. et al. Anti-nociceptive and Anti-inflammatory Activities of Visnagin in Different Nociceptive and Inflammatory Mice Models. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04677-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04677-6

Keywords

Navigation