Skip to main content
Log in

Molecular Mechanism of Neuroprotective Effect of Melatonin on Morphine Addiction and Analgesic Tolerance: an Update

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Drug addiction is a global health problem and continues to place an enormous financial burden on society. This addiction is characterized by drug dependence sensitization and craving. Morphine has been widely used for pain relief, but chronic administration of morphine causes analgesic tolerance, hyperalgesia, and addiction, all of which limit its clinical usage. Alterations of multiple molecular pathways have been reported to be involved in the development of drug addiction, including mitochondrial dysfunction, excessive oxidative stress and nitric oxide stress, and increased levels of apoptosis, autophagy, and neuroinflammation. Preclinical and clinical studies have shown that the co-administration of melatonin with morphine leads to a reversal of these affected pathways. In addition, murine models have shown that melatonin improves morphine-induced analgesic tolerance and addictive behaviors, such as behavioral sensitization, reward effect, and physical dependence. In this review, we attempt to summarize the recent findings about the beneficial effect and molecular mechanism of melatonin on mitochondrial dysfunction, uncontrolled autophagy, and neuroinflammation in morphine addiction and morphine analgesic tolerance. We propose that melatonin might be a useful supplement in the treatment opiate abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code Availability

Not applicable.

Abbreviations

3-MA:

3-Methyladenine

ATG5:

Autophagy related 5

ATG7:

Autophagy related 7

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine monophosphate

CPP:

Conditioned place preference

CREB:

CAMP response element-binding protein

ERK:

Extracellular signal-regulated kinase

MD-2:

Myeloid differentiation protein 2

MEG3:

Maternally expressed gene 3

mtDNA:

Mitochondrial DNA

NLRP3:

NOD-like receptor protein 3

NMDA:

N-Methyl-d-aspartate

NR1:

NMDA subtype 1

NO:

Nitric oxide

NOS:

Nitric oxide synthase

Per1:

Period 1

Per2:

Period 2

PINK1:

PTEN induced kinase 1

PKC:

Protein kinase C

RACK1:

Receptor for activated C kinase 1

ROS:

Reactive oxygen species

SNC:

Substantia nigra compacta

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-α

References

  1. Leshner AI (1997) Addiction is a brain disease, and it matters. Science 278(5335):45–47. https://doi.org/10.1126/science.278.5335.45

    Article  CAS  PubMed  Google Scholar 

  2. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238. https://doi.org/10.1038/npp.2009.110

    Article  PubMed  Google Scholar 

  3. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21(3):467–476. S0896-6273(00)80557-7

    Article  CAS  Google Scholar 

  4. Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25(3):515–532. S0896-6273(00)81056-9

    Article  CAS  Google Scholar 

  5. Kreek MJ, LaForge KS, Butelman E (2002) Pharmacotherapy of addictions. Nat Rev Drug Discov 1(9):710–726. https://doi.org/10.1038/nrd897

    Article  CAS  PubMed  Google Scholar 

  6. Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2(10):695–703. https://doi.org/10.1038/35094560

    Article  CAS  PubMed  Google Scholar 

  7. Justinova Z, Panlilio LV, Goldberg SR (2009) Drug addiction. Curr Top. Behav Neurosci 1:309–346. https://doi.org/10.1007/978-3-540-88955-7_13

    Article  CAS  Google Scholar 

  8. Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 36(2–3):129–138. https://doi.org/10.1016/s0165-0173(01)00088-1

    Article  CAS  PubMed  Google Scholar 

  9. Volkow ND, McLellan AT (2016) Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med 374(13):1253–1263. https://doi.org/10.1056/NEJMra1507771

    Article  CAS  PubMed  Google Scholar 

  10. Feng YM, Jia YF, Su LY, Wang D, Lv L, Xu L, Yao YG (2013) Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy 9(9):1395–1406. https://doi.org/10.4161/auto.25468

    Article  CAS  PubMed  Google Scholar 

  11. Cunha-Oliveira T, Rego AC, Garrido J, Borges F, Macedo T, Oliveira CR (2007) Street heroin induces mitochondrial dysfunction and apoptosis in rat cortical neurons. J Neurochem 101(2):543–554. NC4406

  12. Su LY, Luo R, Liu Q, Su JR, Yang LX, Ding YQ, Xu L, Yao YG (2017) Atg5- and Atg7-dependent autophagy in dopaminergic neurons regulates cellular and behavioral responses to morphine. Autophagy 13(9):1496–1511. https://doi.org/10.1080/15548627.2017.1332549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yahyavi-Firouz-Abadi N, Tahsili-Fahadan P, Ghahremani MH, Dehpour AR (2007) Melatonin enhances the rewarding properties of morphine: involvement of the nitric oxidergic pathway. J Pineal Res 42(4):323–329. https://doi.org/10.1111/j.1600-079X.2007.00422.x

    Article  CAS  PubMed  Google Scholar 

  14. Liu Q, Su LY, Sun C, Jiao L, Miao Y, Xu M, Luo R, Zuo X et al (2020) Melatonin alleviates morphine analgesic tolerance in mice by decreasing NLRP3 inflammasome activation. Redox Biol 34:101560. https://doi.org/10.1016/j.redox.2020.101560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM (2000) Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 28(4):193–202. https://doi.org/10.1034/j.1600-079x.2000.280401.x

    Article  CAS  PubMed  Google Scholar 

  16. Tan DX, Zanghi BM, Manchester LC, Reiter RJ (2014) Melatonin identified in meats and other food stuffs: potentially nutritional impact. J Pineal Res 57(2):213–218. https://doi.org/10.1111/jpi.12152

    Article  CAS  PubMed  Google Scholar 

  17. Gurunathan S, Kang MH, Kim JH (2020) Role and therapeutic potential of melatonin in the central nervous system and cancers. Cancers (Basel) 12(6). https://doi.org/10.3390/cancers12061567

  18. Tan D-X, Chen LD, Poeggeler B, Manchester LC, Reiter R (1993) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  19. Singhal NK, Srivastava G, Agrawal S, Jain SK, Singh MP (2012) Melatonin as a neuroprotective agent in the rodent models of Parkinson’s disease: is it all set to irrefutable clinical translation? Mol Neurobiol 45(1):186–199. https://doi.org/10.1007/s12035-011-8225-x

    Article  CAS  PubMed  Google Scholar 

  20. Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55(4):325–356. https://doi.org/10.1111/jpi.12090

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36(1):1–9. https://doi.org/10.1046/j.1600-079x.2003.00092.x

    Article  CAS  PubMed  Google Scholar 

  22. Srinivasan V, Lauterbach EC, Ho KY, Acuna-Castroviejo D, Zakaria R, Brzezinski A (2012) Melatonin in antinociception: its therapeutic applications. Curr Neuropharmacol 10(2):167–178. https://doi.org/10.2174/157015912800604489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han J, Xu Y, Yu CX, Shen J, Wei YM (2008) Melatonin reverses the expression of morphine-induced conditioned place preference through its receptors within central nervous system in mice. Eur J Pharmacol 594(1–3):125–131. https://doi.org/10.1016/j.ejphar.2008.07.049

    Article  CAS  PubMed  Google Scholar 

  24. Ebadi M, Govitrapong P, Phansuwan-Pujito P, Nelson F, Reiter RJ (1998) Pineal opioid receptors and analgesic action of melatonin. J Pineal Res 24(4):193–200. https://doi.org/10.1111/j.1600-079x.1998.tb00532.x

    Article  CAS  PubMed  Google Scholar 

  25. Pang CS, Tsang SF, Yang JC (2001) Effects of melatonin, morphine and diazepam on formalin-induced nociception in mice. Life Sci 68(8):943–951. https://doi.org/10.1016/s0024-3205(00)00996-6

    Article  CAS  PubMed  Google Scholar 

  26. Tang J, Liao Y, He H, Deng Q, Zhang G, Qi C, Cui H, Jiao B et al (2015) Sleeping problems in Chinese illicit drug dependent subjects. BMC Psychiatry 15:28. https://doi.org/10.1186/s12888-015-0409-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Putnins SI, Griffin ML, Fitzmaurice GM, Dodd DR, Weiss RD (2012) Poor sleep at baseline predicts worse mood outcomes in patients with co-occurring bipolar disorder and substance dependence. J Clin Psychiatry 73(5):703–708. https://doi.org/10.4088/JCP.11m07007

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xie Z, Chen F, Li WA, Geng X, Li C, Meng X, Feng Y, Liu W et al (2017) A review of sleep disorders and melatonin. Neurol Res 39(6):559–565. https://doi.org/10.1080/01616412.2017.1315864

    Article  CAS  PubMed  Google Scholar 

  29. Edalat-Nejad M, Haqhverdi F, Hossein-Tabar T, Ahmadian M (2013) Melatonin improves sleep quality in hemodialysis patients. Indian J Nephrol 23(4):264–269. https://doi.org/10.4103/0971-4065.114488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shamir E, Laudon M, Barak Y, Anis Y, Rotenberg V, Elizur A, Zisapel N (2000) Melatonin improves sleep quality of patients with chronic schizophrenia. J Clin Psychiatry 61(5):373–377. https://doi.org/10.4088/jcp.v61n0509

    Article  CAS  PubMed  Google Scholar 

  31. Cheikh M, Hammouda O, Gaamouri N, Driss T, Chamari K, Cheikh RB, Dogui M, Souissi N (2018) Melatonin ingestion after exhaustive late-evening exercise improves sleep quality and quantity, and short-term performances in teenage athletes. Chronobiol Int 35(9):1281–1293. https://doi.org/10.1080/07420528.2018.1474891

    Article  CAS  PubMed  Google Scholar 

  32. Gendy MNS, Lagzdins D, Schaman J, Le Foll B (2020) Melatonin for treatment-seeking alcohol use disorder patients with sleeping problems: a randomized clinical pilot trial. Sci Rep 10(1):8739. https://doi.org/10.1038/s41598-020-65166-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hemati K, Pourhanifeh MH, Dehdashtian E, Fatemi I, Mehrzadi S, Reiter RJ, Hosseinzadeh A (2020) Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol. https://doi.org/10.1111/fcp.12566

    Article  PubMed  Google Scholar 

  34. Esposti D, Esposti G, Lissoni P, Parravicini L, Fraschini F (1988) Action of morphine on melatonin release in the rat. J Pineal Res 5(1):35–39. https://doi.org/10.1111/j.1600-079x.1988.tb00766.x

    Article  CAS  PubMed  Google Scholar 

  35. Chuchuen U, Ebadi M, Govitrapong P (2004) The stimulatory effect of mu- and delta-opioid receptors on bovine pinealocyte melatonin synthesis. J Pineal Res 37(4):223–229. https://doi.org/10.1111/j.1600-079X.2004.00155.x

    Article  CAS  PubMed  Google Scholar 

  36. Garmabi B, Vousooghi N, Vosough M, Yoonessi A, Bakhtazad A, Zarrindast MR (2016) Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: involvement of period genes and dopamine D1 receptor. Neuroscience 322:104–114. https://doi.org/10.1016/j.neuroscience.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  37. Lewczuk B, Przybylska-Gornowicz B, Wyrzykowski Z (1999) The effect of morphine on melatonin secretion in the domestic pig. In vivo and in vitro study. Neuro Endocrinol Lett 20(3–4):171–178

    CAS  PubMed  Google Scholar 

  38. Fan Y, Liang X, Wang R, Song L (2017) Role of endogenous melatoninergic system in development of hyperalgesia and tolerance induced by chronic morphine administration in rats. Brain Res Bull 135:105–112. https://doi.org/10.1016/j.brainresbull.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  39. Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H (2005) The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 136(1–2):45–53. https://doi.org/10.1016/j.molbrainres.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  40. Noori HR, Spanagel R, Hansson AC (2012) Neurocircuitry for modeling drug effects. Addict Biol 17(5):827–864. https://doi.org/10.1111/j.1369-1600.2012.00485.x

    Article  CAS  PubMed  Google Scholar 

  41. Onaolapo OJ, Onaolapo AY (2017) Melatonin, adolescence, and the brain: an insight into the period-specific influences of a multifunctional signaling molecule. Birth defects research 109(20):1659–1671. https://doi.org/10.1002/bdr2.1171

    Article  CAS  PubMed  Google Scholar 

  42. Onaolapo OJ, Onaolapo AY (2018) Melatonin in drug addiction and addiction management: exploring an evolving multidimensional relationship. World J Psychiatry 8(2):64–74. https://doi.org/10.5498/wjp.v8.i2.64

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li SX, Liu LJ, Jiang WG, Lu L (2009) Morphine withdrawal produces circadian rhythm alterations of clock genes in mesolimbic brain areas and peripheral blood mononuclear cells in rats. J Neurochem 109(6):1668–1679. https://doi.org/10.1111/j.1471-4159.2009.06086.x

    Article  CAS  PubMed  Google Scholar 

  44. Hood S, Cassidy P, Mathewson S, Stewart J, Amir S (2011) Daily morphine injection and withdrawal disrupt 24-h wheel running and PERIOD2 expression patterns in the rat limbic forebrain. Neuroscience 186:65–75. https://doi.org/10.1016/j.neuroscience.2011.04.045

    Article  CAS  PubMed  Google Scholar 

  45. Perreau-Lenz S, Hoelters LS, Leixner S, Sanchis-Segura C, Hansson A, Bilbao A, Spanagel R (2017) mPer1 promotes morphine-induced locomotor sensitization and conditioned place preference via histone deacetylase activity. Psychopharmacology 234(11):1713–1724. https://doi.org/10.1007/s00213-017-4574-0

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Wang Y, Wan C, Zhou W, Peng T, Liu Y, Wang Z, Li G et al (2005) The role of mPer1 in morphine dependence in mice. Neuroscience 130(2):383–388. https://doi.org/10.1016/j.neuroscience.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  47. Li SX, Wang ZR, Li J, Peng ZG, Zhou W, Zhou M, Lu L (2008) Inhibition of Period1 gene attenuates the morphine-induced ERK-CREB activation in frontal cortex, hippocampus, and striatum in mice. Am J Drug Alcohol Abuse 34(6):673–682. https://doi.org/10.1080/00952990802308197

    Article  PubMed  Google Scholar 

  48. Perreau-Lenz S, Sanchis-Segura C, Leonardi-Essmann F, Schneider M, Spanagel R (2010) Development of morphine-induced tolerance and withdrawal: involvement of the clock gene mPer2. Eur Neuropsychopharmacol 20(7):509–517. https://doi.org/10.1016/j.euroneuro.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  49. Sanchis-Segura C, Lopez-Atalaya JP, Barco A (2009) Selective boosting of transcriptional and behavioral responses to drugs of abuse by histone deacetylase inhibition. Neuropsychopharmacology 34(13):2642–2654. https://doi.org/10.1038/npp.2009.125

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Wang Y, Jiang Z, Wan C, Zhou W, Wang Z (2007) The extracellular signal-regulated kinase signaling pathway is involved in the modulation of morphine-induced reward by mPer1. Neuroscience 146(1):265–271. https://doi.org/10.1016/j.neuroscience.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  51. Song L, Wu C, Zuo Y (2015) Melatonin prevents morphine-induced hyperalgesia and tolerance in rats: role of protein kinase C and N-methyl-d-aspartate receptors. BMC Anesthesiol 15:12. https://doi.org/10.1186/1471-2253-15-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raghavendra V, Kulkarni SK (2000) Possible mechanisms of action in melatonin reversal of morphine tolerance and dependence in mice. Eur J Pharmacol 409(3):279–289. https://doi.org/10.1016/s0014-2999(00)00849-9

    Article  CAS  PubMed  Google Scholar 

  53. Xin W, Chun W, Ling L, Wei W (2012) Role of melatonin in the prevention of morphine-induced hyperalgesia and spinal glial activation in rats: protein kinase C pathway involved. Int J Neurosci 122(3):154–163. https://doi.org/10.3109/00207454.2011.635828

    Article  CAS  PubMed  Google Scholar 

  54. Datta PC, Sandman CA, Hoehler FK (1982) Attenuation of morphine analgesia by alpha-MSH, MIF-I, melatonin and naloxone in the rat. Peptides 3(3):433–437. https://doi.org/10.1016/0196-9781(82)90104-8

    Article  CAS  PubMed  Google Scholar 

  55. Lin SH, Huang YN, Kao JH, Tien LT, Tsai RY, Wong CS (2016) Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression. Life Sci 152:38–43. https://doi.org/10.1016/j.lfs.2016.03.032

    Article  CAS  PubMed  Google Scholar 

  56. Rozisky JR, Scarabelot VL, Oliveira C, Macedo IC, Deitos A, Laste G, Caumo W, Torres IL (2016) Melatonin as a potential counter-effect of hyperalgesia induced by neonatal morphine exposure. Neurosci Lett 633:77–81. https://doi.org/10.1016/j.neulet.2016.08.027

    Article  CAS  PubMed  Google Scholar 

  57. Wei YM, Xu Y, Yu CX, Han J (2009) Melatonin enhances the expression of beta-endorphin in hypothalamic arcuate nucleus of morphine-dependent mice. Sheng Li Xue Bao 61(3):255–262

    CAS  PubMed  Google Scholar 

  58. Chen IJ, Yang CP, Lin SH, Lai CM, Wong CS (2020) The circadian hormone melatonin inhibits morphine-induced tolerance and inflammation via the activation of antioxidative enzymes. Antioxidants (Basel, Switzerland) 9(9):780. https://doi.org/10.3390/antiox9090780

    Article  CAS  Google Scholar 

  59. Raghavendra V, Kulkarni SK (1999) Reversal of morphine tolerance and dependence by melatonin: possible role of central and peripheral benzodiazepine receptors. Brain Res 834(1–2):178–181. https://doi.org/10.1016/s0006-8993(99)01520-6

    Article  CAS  PubMed  Google Scholar 

  60. Motaghinejad M, Motaghinejad O, Hosseini P (2015) Attenuation of morphine physical dependence and blood levels of cortisol by central and systemic administration of ramelteon in rat. Iran J Med Sci 40(3):240–247

    PubMed  PubMed Central  Google Scholar 

  61. Yahyavi-Firouz-Abadi N, Tahsili-Fahadan P, Riazi K, Ghahremani MH, Dehpour AR (2007) Melatonin enhances the anticonvulsant and proconvulsant effects of morphine in mice: role for nitric oxide signaling pathway. Epilepsy Res 75(2–3):138–144. https://doi.org/10.1016/j.eplepsyres.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  62. Dimijian GG (2000) Evolving together: the biology of symbiosis, part 2. Proc (Bayl Univ Med Cent) 13(4):381–390. https://doi.org/10.1080/08998280.2000.11927712

    Article  CAS  Google Scholar 

  63. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465. https://doi.org/10.1038/290457a0

    Article  CAS  PubMed  Google Scholar 

  64. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252. https://doi.org/10.1016/j.cell.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  65. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495. https://doi.org/10.1016/j.cell.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  66. Babizhayev MA, Yegorov YE (2016) Reactive oxygen species and the aging eye: specific role of metabolically active mitochondria in maintaining lens function and in the initiation of the oxidation-induced maturity onset cataract—a novel platform of mitochondria-targeted antioxidants with broad therapeutic potential for redox regulation and detoxification of oxidants in eye diseases. Am J Ther 23(1):e98-117. https://doi.org/10.1097/MJT.0b013e3181ea31ff

    Article  PubMed  Google Scholar 

  67. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14(14):1272–1276. https://doi.org/10.1016/j.cub.2004.07.027

    Article  CAS  PubMed  Google Scholar 

  68. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47(3):365–378. https://doi.org/10.1016/j.neuron.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  69. Streck EL, Goncalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J (2014) Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. Braz J Psychiatry 36(2):156–167. https://doi.org/10.1590/1516-4446-2013-1224

    Article  PubMed  Google Scholar 

  70. Ma J, Yuan X, Qu H, Zhang J, Wang D, Sun X, Zheng Q (2015) The role of reactive oxygen species in morphine addiction of SH-SY5Y cells. Life Sci 124:128–135. https://doi.org/10.1016/j.lfs.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  71. Kong H, Jiang CY, Hu L, Teng P, Zhang Y, Pan XX, Sun XD, Liu WT (2019) Morphine induces dysfunction of PINK1/Parkin-mediated mitophagy in spinal cord neurons implying involvement in antinociceptive tolerance. J Mol Cell Biol 11(12):1056–1068. https://doi.org/10.1093/jmcb/mjz002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD (2013) Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol 191(10):5230–5238. https://doi.org/10.4049/jimmunol.1301490

    Article  CAS  PubMed  Google Scholar 

  73. Lin X, Wang YJ, Li Q, Hou YY, Hong MH, Cao YL, Chi ZQ, Liu JG (2009) Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J 276(7):2022–2036. https://doi.org/10.1111/j.1742-4658.2009.06938.x

    Article  CAS  PubMed  Google Scholar 

  74. Su LY, Li H, Lv L, Feng YM, Li GD, Luo R, Zhou HJ, Lei XG et al (2015) Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/alpha-synuclein aggregation. Autophagy 11(10):1745–1759. https://doi.org/10.1080/15548627.2015.1082020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76 Pt B:259–268. https://doi.org/10.1016/j.neuropharm.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  76. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  77. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 114(38):E7997-e8006. https://doi.org/10.1073/pnas.1705768114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan DX, Hardeland R (2020) Targeting host defense system and rescuing compromised mitochondria to increase tolerance against pathogens by melatonin may impact outcome of deadly virus infection pertinent to COVID-19. Molecules (Basel, Switzerland) 25(19). https://doi.org/10.3390/molecules25194410

  79. Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H et al (2020) Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 16(1):52–69. https://doi.org/10.1080/15548627.2019.1596488

    Article  CAS  PubMed  Google Scholar 

  80. Zhao L, Zhu Y, Wang D, Chen M, Gao P, Xiao W, Rao G, Wang X et al (2010) Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy 6(3):386–394. https://doi.org/10.4161/auto.6.3.11289

    Article  CAS  PubMed  Google Scholar 

  81. Pan J, He L, Li X, Li M, Zhang X, Venesky J, Li Y, Peng Y (2016) Activating autophagy in hippocampal cells alleviates the morphine-induced memory impairment. Mol Neurobiol 54(3):1710–1724. https://doi.org/10.1007/s12035-016-9735-3

    Article  CAS  PubMed  Google Scholar 

  82. Hayashi Y, Koga Y, Zhang X, Peters C, Yanagawa Y, Wu Z, Yokoyama T, Nakanishi H (2014) Autophagy in superficial spinal dorsal horn accelerates the cathepsin B-dependent morphine antinociceptive tolerance. Neuroscience 275:384–394. https://doi.org/10.1016/j.neuroscience.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  83. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, Liu H, Xiong H et al (2016) Regulation of morphine-induced synaptic alterations: role of oxidative stress, ER stress, and autophagy. J Cell Biol 215(2):245–258. https://doi.org/10.1083/jcb.201605065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Takeuchi R, Hoshijima H, Nagasaka H, Chowdhury SA, Kikuchi H, Kanda Y, Kunii S, Kawase M et al (2006) Induction of non-apoptotic cell death by morphinone in human promyelocytic leukemia HL-60 cells. Anticancer Res 26(5A):3343–3348

    CAS  PubMed  Google Scholar 

  85. Liu LT, Song YQ, Chen XS, Liu Y, Zhu JJ, Zhou LM, Xu SJ, Wan LH (2020) Morphine-induced RACK1-dependent autophagy in immortalized neuronal cell lines. Br J Pharmacol 177(7):1609–1621. https://doi.org/10.1111/bph.14922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sil S, Periyasamy P, Guo ML, Callen S, Buch S (2018) Morphine-mediated brain region-specific astrocytosis involves the ER stress-autophagy axis. Mol Neurobiol 55(8):6713–6733. https://doi.org/10.1007/s12035-018-0878-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao S, Li E, Gao H (2019) Long non-coding RNA MEG3 attends to morphine-mediated autophagy of HT22 cells through modulating ERK pathway. Pharm Biol 57(1):536–542. https://doi.org/10.1080/13880209.2019.1651343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wan J, Ma J, Anand V, Ramakrishnan S, Roy S (2015) Morphine potentiates LPS-induced autophagy initiation but inhibits autophagosomal maturation through distinct TLR4-dependent and independent pathways. Acta Physiol (Oxf) 214(2):189–199. https://doi.org/10.1111/apha.12506

    Article  CAS  Google Scholar 

  89. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Olsson RA, Romansky MJ (1962) Staphylococcal tricuspid endocarditis in heroin addicts. Ann Intern Med 57:755–762. https://doi.org/10.7326/0003-4819-57-5-755

    Article  CAS  PubMed  Google Scholar 

  91. Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, Reddy A, Somogyi AA et al (2012) Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci USA 109(16):6325–6330. https://doi.org/10.1073/pnas.1200130109

    Article  PubMed  PubMed Central  Google Scholar 

  92. Eidson LN, Inoue K, Young LJ, Tansey MG, Murphy AZ (2017) Toll-like receptor 4 mediates morphine-induced neuroinflammation and tolerance via soluble tumor necrosis factor signaling. Neuropsychopharmacology 42(3):661–670. https://doi.org/10.1038/npp.2016.131

    Article  CAS  PubMed  Google Scholar 

  93. Grace PM, Strand KA, Galer EL, Urban DJ, Wang X, Baratta MV, Fabisiak TJ, Anderson ND et al (2016) Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proc Natl Acad Sci USA 113(24):E3441-3450. https://doi.org/10.1073/pnas.1602070113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cai Y, Kong H, Pan YB, Jiang L, Pan XX, Hu L, Qian YN, Jiang CY et al (2016) Procyanidins alleviates morphine tolerance by inhibiting activation of NLRP3 inflammasome in microglia. J Neuroinflammation 13(1):53. https://doi.org/10.1186/s12974-016-0520-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beitner-Johnson D, Guitart X, Nestler EJ (1993) Glial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J Neurochem 61(5):1766–1773. https://doi.org/10.1111/j.1471-4159.1993.tb09814.x

    Article  CAS  PubMed  Google Scholar 

  96. Wen YR, Tan PH, Cheng JK, Liu YC, Ji RR (2011) Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc 110(8):487–494. https://doi.org/10.1016/S0929-6646(11)60074-0

    Article  PubMed  PubMed Central  Google Scholar 

  97. Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39(3):281–286. https://doi.org/10.1016/s0168-0102(00)00226-1

    Article  CAS  PubMed  Google Scholar 

  98. Berta T, Liu T, Liu YC, Xu ZZ, Ji RR (2012) Acute morphine activates satellite glial cells and up-regulates IL-1beta in dorsal root ganglia in mice via matrix metalloprotease-9. Mol Pain 8:18. https://doi.org/10.1186/1744-8069-8-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin CP, Lu DH (2018) Role of neuroinflammation in opioid tolerance: translational evidence from human-to-rodent studies. Adv Exp Med Biol 1099:125–139. https://doi.org/10.1007/978-981-13-1756-9_11

    Article  CAS  PubMed  Google Scholar 

  100. Johnson JL, Rolan PE, Johnson ME, Bobrovskaya L, Williams DB, Johnson K, Tuke J, Hutchinson MR (2014) Codeine-induced hyperalgesia and allodynia: investigating the role of glial activation. Transl Psychiatry 4:e482. https://doi.org/10.1038/tp.2014.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shen CH, Tsai RY, Shih MS, Lin SL, Tai YH, Chien CC, Wong CS (2011) Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 112(2):454–459. https://doi.org/10.1213/ANE.0b013e3182025b15

    Article  CAS  PubMed  Google Scholar 

  102. Qu J, Tao XY, Teng P, Zhang Y, Guo CL, Hu L, Qian YN, Jiang CY et al (2017) Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation. J Neuroinflammation 14(1):228. https://doi.org/10.1186/s12974-017-0997-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ayar A, Martin DJ, Ozcan M, Kelestimur H (2001) Melatonin inhibits high voltage activated calcium currents in cultured rat dorsal root ganglion neurones. Neurosci Lett 313(1–2):73–77. https://doi.org/10.1016/s0304-3940(01)02188-7

    Article  CAS  PubMed  Google Scholar 

  104. Kalso E, Edwards JE, Moore RA, McQuay HJ (2004) Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain 112(3):372–380. https://doi.org/10.1016/j.pain.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  105. Fields HL (2011) The doctor’s dilemma: opiate analgesics and chronic pain. Neuron 69(4):591–594. https://doi.org/10.1016/j.neuron.2011.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abdelrahman AMF, Omara A, Elzohry AAM (2020) Safety and efficacy of oral melatonin when combined with thoracic epidural analgesia in patients with bilateral multiple fracture ribs. Local Reg Anesth 13:21–28. https://doi.org/10.2147/LRA.S244510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Caumo W, Levandovski R, Hidalgo MP (2009) Preoperative anxiolytic effect of melatonin and clonidine on postoperative pain and morphine consumption in patients undergoing abdominal hysterectomy: a double-blind, randomized, placebo-controlled study. J Pain 10(1):100–108. https://doi.org/10.1016/j.jpain.2008.08.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Ian Logan for language editing on the early version of the manuscript.

Funding

The study was supported by the National Natural Science Foundation of China (31671050 and 31900695), the Strategic Priority Research Program (B) of CAS (XDB02020003 to YGY) and the Bureau of Frontier Sciences and Education of CAS (QYZDJ-SSW-SMC005), the Youth Innovation Promotion Association (to LYS) and “Light of West China” Program (中科院西部之光计划) (to LYS) of CAS, and the Applied Basic Research Foundation of Yunnan Province, Yunnan Department of Science and Technology (202001AT070103).

Author information

Authors and Affiliations

Authors

Contributions

Yong-Gang Yao, Ling-Yan Su, Qianjin Liu, and Lijin Jiao contributed in the conception and design of the work and drafting of the manuscript. All authors reviewed the content and approved the final version for publication.

Corresponding authors

Correspondence to Ling-Yan Su or Yong-Gang Yao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have seen and approved the manuscript and contributed significantly to this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, LY., Liu, Q., Jiao, L. et al. Molecular Mechanism of Neuroprotective Effect of Melatonin on Morphine Addiction and Analgesic Tolerance: an Update. Mol Neurobiol 58, 4628–4638 (2021). https://doi.org/10.1007/s12035-021-02448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02448-0

Keywords

Navigation