Skip to main content
Log in

Optimization of Simultaneous Nutrients and Chemical Oxygen Demand Removal from Anaerobically Digested Liquid Dairy Manure in a Two-Step Fed Sequencing Batch Reactor System Using Taguchi Method and Grey Relational Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The technological development for efficient nutrient removal from liquid dairy manure is critical to a sustainable dairy industry. A nutrient removal process using a two-step fed sequencing batch reactor (SBR) system was developed in this study to achieve the applicability of simultaneous removal of phosphorus, nitrogen, and chemical oxygen demand from anaerobically digested liquid dairy manure (ADLDM). Three operating parameters, namely anaerobic time:aerobic time (min), anaerobic DO:aerobic DO (mg L−1), and hydraulic retention time (days), were systematically investigated and optimized using the Taguchi method and grey relational analysis for maximum removal efficiencies of total phosphorus (TP), ortho-phosphate (OP), ammonia-nitrogen (NH3-N), total nitrogen (TN), and chemical oxygen demand (COD) simultaneously. The results demonstrated that the optimal mean removal efficiencies of 91.21%, 92.63%, 91.82%, 88.61%, and 90.21% were achieved for TP, OP, NH3-N, TN, and COD at operating conditions, i.e., anaerobic:aerobic time of 90:90 min, anaerobic DO:aerobic DO of 0.4:2.4 mg L−1, and HRT of 3 days. Based on analysis of variance, the percentage contributions of these operating parameters towards the mean removal efficiencies of TP and COD were ranked in the order of anaerobic DO:aerobic DO > HRT > anaerobic time:aerobic time, while HRT was the most influential parameter for the mean removal efficiencies of OP, NH3-N, and TN followed by anaerobic time:aerobic time and anaerobic DO:aerobic DO. The optimal conditions obtained in this study are beneficial to the development of pilot and full-scale systems for simultaneous biological removal of phosphorus, nitrogen, and COD from ADLDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data produced or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. J. M. Macdonald, J. Law, and R. Mosheim, “Consolidation in U.S. dairy farming ERR-274,” Jul. 2020, Accessed: Jan. 13, 2022. [Online]. Available: https://www.ers.usda.gov/webdocs/publications/98901/err-274.pdf?v=967.8

  2. Wang, L., Chen, L., & Wu, S. (2020). Nutrient reduction of dairy manure through solid-liquid separation with flocculation and subsequent microalgal treatment. Applied Biochemistry and Biotechnology, 190(4), 1425–1437. https://doi.org/10.1007/S12010-019-03185-W/FIGURES/6

    Article  CAS  PubMed  Google Scholar 

  3. C. Burton and C. Turner, Manure management: Treatment strategies for sustainable agriculture. 2003. Accessed: Mar. 09, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=am8v8m1q4dMC&oi=fnd&pg=PR5&ots=SK4QEDnTbr&sig=YXc7Rjdu4x7c33Y9OOdnAC5octs

    Google Scholar 

  4. Szogi, A. A., Vanotti, M. B., & Ro, K. S. (2015). Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Current Pollution Reports, 1(1), 47–56. https://doi.org/10.1007/s40726-015-0005-1

    Article  CAS  Google Scholar 

  5. S. Kaffka, T. Barzee, H. El-Mashad, R. Williams, S. Zicari, and R. Zhang, “Evaluation of dairy manure management practices for greenhouse gas emissions mitigation in California,” Feb. 2016. Accessed: Feb. 13, 2021. [Online]. Available: https://biomass.ucdavis.edu/wp-content/uploads/ARB-Report-Final-Draft-Transmittal-Feb-26-2016.pdf

  6. Linville, J. L., Shen, Y., Wu, M. M., & Urgun-Demirtas, M. (2015). Current state of anaerobic digestion of organic wastes in North America. Current Sustainable/Renewable Energy Reports, 2(4), 136–144. https://doi.org/10.1007/s40518-015-0039-4

    Article  Google Scholar 

  7. Nicholson, F. A., Groves, S. J., & Chambers, B. J. (2005). Pathogen survival during livestock manure storage and following land application. Bioresource Technology, 96(2), 135–143. https://doi.org/10.1016/j.biortech.2004.02.030

    Article  CAS  PubMed  Google Scholar 

  8. Dutta, A., & Sarkar, S. (2015). Sequencing batch reactor for wastewater treatment: Recent advances. Current Pollution Reports, 1(3), 177–190. https://doi.org/10.1007/s40726-015-0016-y

    Article  Google Scholar 

  9. Onnis-Hayden, A., et al. (2020). Survey of full-scale sidestream enhanced biological phosphorus removal (S2EBPR) systems and comparison with conventional EBPRs in North America: Process stability, kinetics, and microbial populations. Water Environment Research, 92(3), 403–417. https://doi.org/10.1002/wer.1198

    Article  CAS  PubMed  Google Scholar 

  10. Ju, F., & Zhang, T. (2014). Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. The ISME Journal 2015 9:3, 9(3), 683–695. https://doi.org/10.1038/ismej.2014.162

    Article  CAS  Google Scholar 

  11. Izadi, P., Izadi, P., & Eldyasti, A. (2021). A review of biochemical diversity and metabolic modeling of EBPR process under specific environmental conditions and carbon source availability. Journal of Environmental Management, 288, 112362. https://doi.org/10.1016/j.jenvman.2021.112362

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, J., Wang, X., Li, X., Jia, S., & Peng, Y. (2018). Combining partial nitrification and post endogenous denitrification in an EBPR system for deep-level nutrient removal from low carbon/nitrogen (C/N) domestic wastewater. Chemosphere, 210, 19–28. https://doi.org/10.1016/j.chemosphere.2018.06.135

    Article  CAS  PubMed  Google Scholar 

  13. Huang, W., et al. (2019). Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity. Science of The Total Environment, 651, 859–870. https://doi.org/10.1016/j.scitotenv.2018.09.218

    Article  CAS  PubMed  Google Scholar 

  14. Layer, M., Villodres, M. G., Hernandez, A., Reynaert, E., Morgenroth, E., & Derlon, N. (2020). Limited simultaneous nitrification-denitrification (SND) in aerobic granular sludge systems treating municipal wastewater: Mechanisms and practical implications. Water Research X, 7, 100048. https://doi.org/10.1016/J.WROA.2020.100048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan, C., Wang, B., Peng, Y., Li, X., Zhang, Q., & Hu, T. (2020). Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen. Chemosphere, 257, 127097. https://doi.org/10.1016/j.chemosphere.2020.127097

    Article  CAS  PubMed  Google Scholar 

  16. Peng, Y., Hou, H., Wang, S., Cui, Y., & Zhiguo, Y. (2008). Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system. Journal of Environmental Sciences, 20(4), 398–403. https://doi.org/10.1016/S1001-0742(08)62070-7

    Article  CAS  Google Scholar 

  17. Lo, K. V., & Liao, P. H. (1986). Anaerobic-aerobic biological treatment of screened dairy manure. Biomass, 10(3), 187–193. https://doi.org/10.1016/0144-4565(86)90052-1

    Article  CAS  Google Scholar 

  18. Wu, C.- Y., Peng, Y.- Z., Li, X.- L., & Wang, S.- Y. (2010). Effect of carbon source on biological nitrogen and phosphorus removal in an anaerobic-anoxic-oxic (A2O) process. Journal of Environmental Engineering, 136. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000262

  19. Bernet, N., Delgenes, N., Akunna, J. C., Delgenes, J. P., & Moletta, R. (2000). Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Water Research, 34(2), 611–619. https://doi.org/10.1016/S0043-1354(99)00170-0

    Article  CAS  Google Scholar 

  20. Díez-Montero, R., de Florio, L., González-Viar, M., Herrero, M., & Tejero, I. (2016). Performance evaluation of a novel anaerobic-anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater. Bioresource Technology, 209, 195–204. https://doi.org/10.1016/j.biortech.2016.02.084

    Article  CAS  PubMed  Google Scholar 

  21. R. Castle and J. N.-H. Pe, “Aerobic vs. anaerobic-examining pretreatment of groundwater in small & rural systems, Water & Waste Digest”. 2007. https://www.wwdmag.com/aeration/aerobic-vs-anaerobic (accessed Mar. 06, 2022)

    Google Scholar 

  22. Kushwaha, J. P., Srivastava, V. C., & Mall, I. D. (2013). Sequential batch reactor for dairy wastewater treatment: Parametric optimization; kinetics and waste sludge disposal. Journal of Environmental Chemical Engineering, 1(4), 1036–1043. https://doi.org/10.1016/J.JECE.2013.08.018

    Article  CAS  Google Scholar 

  23. Xu, S., Wu, D., & Hu, Z. (2014). Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor. Water Research, 55, 12–20. https://doi.org/10.1016/j.watres.2014.01.046

    Article  CAS  PubMed  Google Scholar 

  24. Matinfar, A., Mohammadi, M., Najafpour, G. D., & Younesi, H. (2019). Ammonia and phosphorus removal from mixture of treated and raw cattle manure wastewater in a low-O2 granular sequencing batch reactor. Journal of Chemical Technology & Biotechnology, 94(7), 2238–2247. https://doi.org/10.1002/JCTB.6011

    Article  CAS  Google Scholar 

  25. Qureshi, A., Lo, K. V., Mavinic, D. S., Liao, P. H., Koch, F., & Kelly, H. (2006). Dairy manure treatment, digestion and nutrient recovery as a phosphate fertilizer. Journal of Environmental Science and Health, Part B, 41(7), 1221–1235. https://doi.org/10.1080/03601230600857098

    Article  CAS  Google Scholar 

  26. Wu, S. X., Zhu, J., & Chen, L. (2017). Feeding schemes and C/N ratio of a laboratory-scale step-fed sequencing batch reactor for liquid swine manure treatment. Journal of Environmental Science and Health, Part A, 52(8), 718–726. https://doi.org/10.1080/10934529.2017.1301748

    Article  CAS  Google Scholar 

  27. Zhang, Z. J., Zhu, J., King, J., & Li, W. H. (2006). A two-step fed SBR for treating swine manure. Process Biochemistry, 41(4), 892–900. https://doi.org/10.1016/j.procbio.2005.11.005

    Article  CAS  Google Scholar 

  28. Wu, X., Zhu, J., Cheng, J., & Zhu, N. (2015). Optimization of three operating parameters for a two-step fed sequencing batch reactor (SBR) system to remove nutrients from swine wastewater. Applied Biochemistry and Biotechnology, 175(6), 2857–2871. https://doi.org/10.1007/s12010-014-1467-0

    Article  CAS  PubMed  Google Scholar 

  29. Ghetiya, N. D., Patel, K. M., & Kavar, A. J. (2016). Multi-objective optimization of FSW process parameters of aluminium alloy using Taguchi-based grey relational analysis. Transactions of the Indian Institute of Metals, 69(4), 917–923. https://doi.org/10.1007/S12666-015-0581-1/TABLES/10

    Article  CAS  Google Scholar 

  30. Kanchana, J., Prasath, V., Krishnaraj, V., & Geetha Priyadharshini, B. (2019). Multi response optimization of process parameters using grey relational analysis for milling of hardened Custom 465 steel. Procedia Manufacturing, 30, 451–458. https://doi.org/10.1016/J.PROMFG.2019.02.064

    Article  Google Scholar 

  31. Girish, B. M., Siddesh, H. S., & Satish, B. M. (2019). Taguchi grey relational analysis for parametric optimization of severe plastic deformation process. SN Applied Sciences, 1(8), 1–11. https://doi.org/10.1007/S42452-019-0982-6/FIGURES/2

    Article  CAS  Google Scholar 

  32. Jozić, S., Bajić, D., & Celent, L. (2015). Application of compressed cold air cooling: Achieving multiple performance characteristics in end milling process. Journal of Cleaner Production, 100, 325–332. https://doi.org/10.1016/J.JCLEPRO.2015.03.095

    Article  Google Scholar 

  33. APHA, AWWA, & WEF. (2012). Standard methods for the examination of water and wastewater (22nd ed.). American Water Works Association.

    Google Scholar 

  34. Izadi, P., Izadi, P., & Eldyasti, A. (2020). Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: A review. Reviews in Environmental Science and Biotechnology, 19(3), 561–593. https://doi.org/10.1007/s11157-020-09538-w

    Article  CAS  Google Scholar 

  35. Izadi, P., Izadi, P., & Eldyasti, A. (2021). Enhancement of simultaneous nitrogen and phosphorus removal using intermittent aeration mechanism. Journal of Environmental Sciences, 109, 1–14. https://doi.org/10.1016/j.jes.2021.02.026

    Article  CAS  Google Scholar 

  36. Wu, S. X., & Maskaly, J. (2018). Study on the effect of total dissolved solids (TDS) on the performance of an SBR for COD and nutrients removal. Journal of Environmental Science and Health, Part A, 53(2), 146–153. https://doi.org/10.1080/10934529.2017.1383130

    Article  CAS  Google Scholar 

  37. Pundir, R., Chary, G. H. V. C., & Dastidar, M. G. (2018). Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp. Water Resources and Industry, 20, 83–92. https://doi.org/10.1016/J.WRI.2016.05.001

    Article  Google Scholar 

  38. Sivaiah, P., & Chakradhar, D. (2019). Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel. Measurement, 134, 142–152. https://doi.org/10.1016/J.MEASUREMENT.2018.10.067

    Article  Google Scholar 

  39. Oehmen, A., et al. (2007). Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research, 41(11), 2271–2300. https://doi.org/10.1016/j.watres.2007.02.030

    Article  CAS  PubMed  Google Scholar 

  40. Shen, N., Chen, Y., & Zhou, Y. (2017). Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature. Water Research, 114, 308–315. https://doi.org/10.1016/J.WATRES.2017.02.051

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, X., et al. (2014). Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR) – A mini-review. Process Biochemistry, 49(12), 2207–2213. https://doi.org/10.1016/j.procbio.2014.10.008

    Article  CAS  Google Scholar 

  42. Cavinato, C., da Ros, C., Pavan, P., & Bolzonella, D. (2017). Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresource Technology, 223, 59–64. https://doi.org/10.1016/J.BIORTECH.2016.10.041

    Article  CAS  PubMed  Google Scholar 

  43. Perez-Esteban, N., et al. (2022). Potential of anaerobic co-fermentation in wastewater treatments plants: A review. Science of The Total Environment, 813, 152498. https://doi.org/10.1016/J.SCITOTENV.2021.152498

    Article  CAS  PubMed  Google Scholar 

  44. Song, K. G., Cho, J., & Ahn, K. H. (2009). Effects of internal recycling time mode and hydraulic retention time on biological nitrogen and phosphorus removal in a sequencing anoxic/anaerobic membrane bioreactor process. Undefined, 32(1), 135–142. https://doi.org/10.1007/s00449-008-0232-6

    Article  CAS  Google Scholar 

  45. Cetin, M. H., Ozcelik, B., Kuram, E., & Demirbas, E. (2011). Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. Journal of Cleaner Production, 19(17–18), 2049–2056. https://doi.org/10.1016/j.jclepro.2011.07.013

    Article  CAS  Google Scholar 

  46. Kivak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 50(1), 19–28. https://doi.org/10.1016/j.measurement.2013.12.017

    Article  Google Scholar 

  47. Alavi-Borazjani, S. A., Tarelho, L. A. d. C., & Capela, M. I. (2021). Parametric optimization of the dark fermentation process for enhanced biohydrogen production from the organic fraction of municipal solid waste using Taguchi method. International Journal of Hydrogen Energy, 46(41), 21372–21382. https://doi.org/10.1016/j.ijhydene.2021.04.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thankfully acknowledge the assistance of Dr. Christopher Williams in designing the statistical model and Dr. Arif Reza and Kevin Kruger for their insights and assistance during the experiments.

Funding

This study was financially supported by the USDA National Institute of Food and Agriculture (NIFA) Hatch Project (Project No. IDA01604, Accession No. 1019082), and the USDA NIFA Sustainable Agricultural Systems project (Award No. 2020-69012-31871).

Author information

Authors and Affiliations

Authors

Contributions

Sehrish Asghar and Dr. Lide Chen have conceptualized and designed the study. Sehrish Asghar has conducted the lab experiments and formal analysis, compiled information, and drafted the first manuscript. Dr. Lide Chen has acquired the funding, revised the manuscript, and supervised the project. Dr. B. Brian He has critically reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lide Chen.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Informed consent was obtained from all individual participants included in this study.

Consent for Publication

The participants have given their consent to submit this manuscript to this esteemed journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 586 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, S., Chen, L. & He, B.B. Optimization of Simultaneous Nutrients and Chemical Oxygen Demand Removal from Anaerobically Digested Liquid Dairy Manure in a Two-Step Fed Sequencing Batch Reactor System Using Taguchi Method and Grey Relational Analysis. Appl Biochem Biotechnol 196, 537–557 (2024). https://doi.org/10.1007/s12010-023-04562-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04562-2

Keywords

Navigation