Skip to main content

Advertisement

Log in

Hypoxia Induces Tumor-Derived Exosome SNHG16 to Mediate Nasopharyngeal Carcinoma Progression through the miR-23b-5p/MCM6 Pathway

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aims to investigate the mechanism of tumor-derived exosomal (EVs) SNHG16 in promoting the progression of nasopharyngeal carcinoma (NPC). QRT-PCR was used to detect the expression of SNHG16, miR-23b-5p and MCM6 in NPC. MTT, flow cytometry and transwell were used to detect the effects of them on the proliferation, cycle, apoptosis and invasion ability of NPC. Transmission electron microscopy, Western blotting and BCA were used to verify the regulation of exosome secretion under different oxygen environments. Our results showed that hypoxia induces tumor-derived exosome SNHG16 to mediate NPC progression through the miR-23b-5p/MCM6 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. An, Y., Zhang, Z., Shang, Y., Jiang, X., Dong, J., Yu, P., Nie, Y., & Zhao, Q. (2015). miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death & Disease, 6, e1766.

    Article  CAS  Google Scholar 

  2. Bai, R., Li, Y., Jian, L., Yang, Y., Zhao, L., & Wei, M. (2022). The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: Mechanisms and clinical treatment strategies. Molecular Cancer, 21, 177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bister, N., Pistono, C., Huremagic, B., Jolkkonen, J., Giugno, R., & Malm, T. (2020). Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J Extracell Vesicles, 10, e12002.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cao, B., Dai, W., Ma, S., Wang, Q., Lan, M., Luo, H., Chen, T., Yang, X., Zhu, G., Li, Q., & Lang, J. (2019). An EV-Associated Gene Signature Correlates with Hypoxic Microenvironment and Predicts Recurrence in Lung Adenocarcinoma. Molecular Therapy - Nucleic Acids, 17, 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Catapano, F., Domingos, J., Perry, M., Ricotti, V., Phillips, L., Servais, L., Seferian, A., Groot, I., Krom, Y. D., Niks, E. H., Verschuuren, J. J., Straub, V., Voit, T., Morgan, J., & Muntoni, F. (2018). Downregulation of miRNA-29, -23 and -21 in urine of Duchenne muscular dystrophy patients. Epigenomics, 10, 875–889.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, F., Huang, C., Wu, Q., Jiang, L., Chen, S., & Chen, L. (2020). Circular RNAs expression profiles in plasma exosomes from early-stage lung adenocarcinoma and the potential biomarkers. Journal of Cellular Biochemistry, 121, 2525–2533.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, F., Xu, B., Li, J., Yang, X., Gu, J., Yao, X., & Sun, X. (2021). Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. Journal of Experimental & Clinical Cancer Research, 40, 38.

    Article  CAS  Google Scholar 

  8. Choudhry, H., & Harris, A. L. (2018). Advances in Hypoxia-Inducible Factor Biology. Cell Metabolism, 27, 281–298.

    Article  CAS  PubMed  Google Scholar 

  9. Dai, J., Su, Y., Zhong, S., Cong, L., Liu, B., Yang, J., Tao, Y., He, Z., Chen, C., & Jiang, Y. (2020). Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduction and Targeted Therapy, 5, 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Felice, F., Marchetti, C., Serpone, M., Camarda, A., Vischioni, B., Ingargiola, R., Musio, D., & Orlandi, E. (2023). Upper-neck irradiation versus standard whole-neck irradiation in nasopharyngeal carcinoma: A systematic review and meta-analysis. Tumori. https://doi.org/10.1177/03008916231154765

    Article  PubMed  Google Scholar 

  11. Gao, W., Chan, J. Y., & Wong, T. S. (2014). Differential expression of long noncoding RNA in primary and recurrent nasopharyngeal carcinoma. BioMed Research International, 2014, 404567.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ha, J., Kim, H., Yoon, Y., & Park, S. (2015). A method of extracting disease-related microRNAs through the propagation algorithm using the environmental factor based global miRNA network. BioMedical Materials and Engineering, 26(Suppl 1), S1763-1772.

    PubMed  Google Scholar 

  13. He, G., Peng, X., Wei, S., Yang, S., Li, X., Huang, M., Tang, S., Jin, H., Liu, J., Zhang, S., Zheng, H., Fan, Q., Liu, J., Yang, L., & Li, H. (2022). Exosomes in the hypoxic TME: From release, uptake and biofunctions to clinical applications. Molecular Cancer, 21, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  14. He, R. Q., Wu, P. R., Xiang, X. L., Yang, X., Liang, H. W., Qiu, X. H., Yang, L. H., Peng, Z. G., & Chen, G. (2018). Downregulated miR-23b-3p expression acts as a predictor of hepatocellular carcinoma progression: A study based on public data and RT-qPCR verification. International Journal of Molecular Medicine, 41, 2813–2831.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hotton, J., Agopiantz, M., Leroux, A., Charra-Brunaud, C., Marie, B., Busby-Venner, H., Morel, O., Gueant, J. L., Vignaud, J. M., Battaglia-Hsu, S. F., & Gauchotte, G. (2018). Minichromosome maintenance complex component 6 (MCM6) expression correlates with histological grade and survival in endometrioid endometrial adenocarcinoma. Virchows Archiv, 472, 623–633.

    Article  CAS  PubMed  Google Scholar 

  16. Hsu, W. L., Tse, K. P., Liang, S., Chien, Y. C., Su, W. H., Yu, K. J., Cheng, Y. J., Tsang, N. M., Hsu, M. M., Chang, K. P., Chen, I. H., Chen, T. I., Yang, C. S., Goldstein, A. M., Chen, C. J., Chang, Y. S., & Hildesheim, A. (2012). Evaluation of human leukocyte antigen-A (HLA-A), other non-HLA markers on chromosome 6p21 and risk of nasopharyngeal carcinoma. PLoS ONE, 7, e42767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, X., Jiang, H., & Jiang, X. (2017). Downregulation of lncRNA ANRIL inhibits proliferation, induces apoptosis, and enhances radiosensitivity in nasopharyngeal carcinoma cells through regulating miR-125a. Cancer Biology & Therapy, 18, 331–338.

    Article  CAS  Google Scholar 

  18. Jiang, H., Zhao, H., Zhang, M., He, Y., Li, X., Xu, Y., & Liu, X. (2022). Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Frontiers in Immunology, 13, 824188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar, A., & Deep, G. (2020). Hypoxia in tumor microenvironment regulates exosome biogenesis: Molecular mechanisms and translational opportunities. Cancer Letters, 479, 23–30.

    Article  CAS  PubMed  Google Scholar 

  20. Li, W., Duan, X., Chen, X., Zhan, M., Peng, H., Meng, Y., Li, X., Li, X. Y., Pang, G., & Dou, X. (2022). Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma. Frontiers in Immunology, 13, 1079515.

    Article  CAS  PubMed  Google Scholar 

  21. Li, X., & Li, X. (2023). USP21 Promotes the Progression of Nasopharyngeal Carcinoma by Regulating FOXM1. Stem Cells International, 2023, 9196583.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lian, D., Amin, B., Du, D., & Yan, W. (2017). Enhanced expression of the long non-coding RNA SNHG16 contributes to gastric cancer progression and metastasis. Cancer Biomarkers, 21, 151–160.

    Article  PubMed  Google Scholar 

  23. Lin, M., Zhang, X. L., You, R., Liu, Y. P., Cai, H. M., Liu, L. Z., Liu, X. F., Zou, X., Xie, Y. L., Zou, R. H., Zhang, Y. N., Sun, R., Feng, W. Y., Wang, H. Y., Tao, G. H., Li, H. J., Huang, W. J., Zhang, C., Huang, P. Y., … Chen, M. Y. (2023). Evolutionary route of nasopharyngeal carcinoma metastasis and its clinical significance. Nature Communications, 14, 610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, D., Gong, H., Tao, Z., Chen, S., Kong, Y., & Xiao, B. (2023). LncRNA IUR downregulates miR-144 to regulate PTEN in nasopharyngeal carcinoma. Archives of Physiology and Biochemistry, 129, 116–121.

    Article  CAS  PubMed  Google Scholar 

  25. Lu, Y., Li, T., Wei, G., Liu, L., Chen, Q., Xu, L., Zhang, K., Zeng, D., & Liao, R. (2016). The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biology, 37, 11733–11741.

    Article  CAS  PubMed  Google Scholar 

  26. Mashouri, L., Yousefi, H., Aref, A. R., Ahadi, A. M., Molaei, F., & Alahari, S. K. (2019). Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer, 18, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mazzoccoli, G., Colangelo, T., Panza, A., Rubino, R., Tiberio, C., Palumbo, O., Carella, M., Trombetta, D., Gentile, A., Tavano, F., Valvano, M. R., Storlazzi, C. T., Macchia, G., De Cata, A., Bisceglia, G., Capocefalo, D., Colantuoni, V., Sabatino, L., Piepoli, A., & Mazza, T. (2016). Analysis of clock gene-miRNA correlation networks reveals candidate drivers in colorectal cancer. Oncotarget, 7, 45444–45461.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 146, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song, J., Ahn, C., Chun, C. H., & Jin, E. J. (2014). A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. Journal of Orthopaedic Research, 32, 1628–1635.

    Article  CAS  PubMed  Google Scholar 

  30. Tao, R., Hu, S., Wang, S., Zhou, X., Zhang, Q., Wang, C., Zhao, X., Zhou, W., Zhang, S., Li, C., Zhao, H., He, Y., Zhu, S., Xu, J., Jiang, Y., Li, L., & Gao, Y. (2015). Association between indel polymorphism in the promoter region of lncRNA GAS5 and the risk of hepatocellular carcinoma. Carcinogenesis, 36, 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  31. Vigouroux, C., Casse, J. M., Battaglia-Hsu, S. F., Brochin, L., Luc, A., Paris, C., Lacomme, S., Gueant, J. L., Vignaud, J. M., & Gauchotte, G. (2015). Methyl(R217)HuR and MCM6 are inversely correlated and are prognostic markers in non small cell lung carcinoma. Lung Cancer, 89, 189–196.

    Article  PubMed  Google Scholar 

  32. Wang, Y., Cheng, N., & Luo, J. (2017). Downregulation of lncRNA ANRIL represses tumorigenicity and enhances cisplatin-induced cytotoxicity via regulating microRNA let-7a in nasopharyngeal carcinoma. Journal of Biochemical and Molecular Toxicology, 31. https://doi.org/10.1002/jbt.21904

  33. Wu, Y., Lyu, H., Liu, H., Shi, X., Song, Y., & Liu, B. (2016). Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer. Science and Reports, 6, 31093.

    Article  CAS  Google Scholar 

  34. Xi, L., Peng, M., Liu, S., Liu, Y., Wan, X., Hou, Y., Qin, Y., Yang, L., Chen, S., Zeng, H., Teng, Y., Cui, X., & Liu, M. (2021). Hypoxia-stimulated ATM activation regulates autophagy-associated exosome release from cancer-associated fibroblasts to promote cancer cell invasion. Journal of Extracellular Vesicles, 10, e12146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, F., Zha, G., Wu, Y., Cai, W., & Ao, J. (2018). Overexpressing lncRNA SNHG16 inhibited HCC proliferation and chemoresistance by functionally sponging hsa-miR-93. Oncotargets and Therapy, 11, 8855–8863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, T., He, X., Chen, A., Tan, K., & Du, X. (2018). LncRNA HOTAIR contributes to the malignancy of hepatocellular carcinoma by enhancing epithelial-mesenchymal transition via sponging miR-23b-3p from ZEB1. Gene, 670, 114–122.

    Article  CAS  PubMed  Google Scholar 

  37. Yang, W., Hong, L., Xu, X., Wang, Q., Huang, J., & Jiang, L. (2017). LncRNA GAS5 suppresses the tumorigenesis of cervical cancer by downregulating miR-196a and miR-205. Tumour Biology, 39, 1010428317711315.

    Article  PubMed  Google Scholar 

  38. Yao, H., Tian, L., Yan, B., Yang, L., & Li, Y. (2022). LncRNA TP73-AS1 promotes nasopharyngeal carcinoma progression through targeting miR-342-3p and M2 polarization via exosomes. Cancer Cell International, 22, 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. (2015). Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13, 17–24.

    Article  CAS  Google Scholar 

  40. Zhang, K., Chen, J., Song, H., & Chen, L. B. (2018). SNHG16/miR-140-5p axis promotes esophagus cancer cell proliferation, migration and EMT formation through regulating ZEB1. Oncotarget, 9, 1028–1040.

    Article  PubMed  Google Scholar 

  41. Zhang, L., & Yu, D. (2019). Exosomes in cancer development, metastasis, and immunity. Biochimica et Biophysica Acta - Reviews on Cancer, 1871, 455–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y., Xu, Y., Feng, L., Li, F., Sun, Z., Wu, T., Shi, X., Li, J., & Li, X. (2016). Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget, 7, 64148–64167.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhao, R. B., Zhu, L. H., Shu, J. P., Qiao, L. X., & Xia, Z. K. (2018). GAS5 silencing protects against hypoxia/ischemia-induced neonatal brain injury. Biochemical and Biophysical Research Communications, 497, 285–291.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, S., Li, T., Li, J., Lu, Q., Han, C., Wang, N., Qiu, Q., Cao, H., Xu, X., Chen, H., & Zheng, Z. (2016). miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia, 59, 644–654.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Y., Xia, L., Lin, J., Wang, H., Oyang, L., Tan, S., Tian, Y., Su, M., Wang, H., Cao, D., & Liao, Q. (2018). Exosomes in Nasopharyngeal Carcinoma. Journal of Cancer, 9, 767–777.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou, Z., & Chen, Y. (2023). LncRNA SNHG1 promotes nasopharyngeal carcinoma development via targeting miR-424-5p. Histology and Histopathology, 18589. https://doi.org/10.14670/HH-18-589

  47. Zhu, L., Sun, H. T., Wang, S., Huang, S. L., Zheng, Y., Wang, C. Q., Hu, B. Y., Qin, W., Zou, T. T., Fu, Y., Shen, X. T., Zhu, W. W., Geng, Y., Lu, L., Jia, H. L., Qin, L. X., & Dong, Q. Z. (2020). Isolation and characterization of exosomes for cancer research. Journal of Hematology & Oncology, 13, 152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wei Hou: critical revision of the manuscript; Yangao Wei: substantial contribution to the conception and design of the work, manuscript drafting; Lu Xu and Yunxiao Wu: acquisition, analysis, and interpretation of the data; Yujuan Liu: revising the manuscript critically, final approval of the version to be published. All authors have read and approved the final article.

Corresponding author

Correspondence to Yangao Wei.

Ethics declarations

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of The Affiliated Hospital of Shaanxi University of Chinese Medicine.

Consent to Participate

All samples were collected with the informed consent of the patients and the study was approved by The Affiliated Hospital of Shaanxi University of Chinese Medicine.

Consent to Publish

None.

Competing Interests

The authors confirm that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12010_2023_4558_MOESM1_ESM.jpg

Supplementary file1 (JPG 2038 KB) Supplementary Figure 1 The results of GO analysis. (A) The GOplot indicates the GO terms targeted by enrichment genes and log2 (FC) values. (B) The top 5 Enrichment results of biological process (BP), cell component (CC) and molecular function (MF) in the GOplot.

12010_2023_4558_MOESM2_ESM.jpg

Supplementary file2 (JPG 800 KB) Supplementary Figure 2 Expression, prognosis and correlation of SNHG16, miR-23b-3p and MCM6 in TCGA database. (A) Expression level of SNHG16 in head and neck tumors (HNSC). (B) Expression level of SNHG16 in head and neck tumors (HNSC). (C) Expression level of SNHG16 in head and neck tumors (HNSC). (D) Pearson correlation was used to verify the correlation between HIF-1a and SNHG16 expression from TCGA database. (G) The KM curve was used to predict the regulation of SNHG16 expression on the prognosis of HNSC.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Xu, L., Su, T. et al. Hypoxia Induces Tumor-Derived Exosome SNHG16 to Mediate Nasopharyngeal Carcinoma Progression through the miR-23b-5p/MCM6 Pathway. Appl Biochem Biotechnol 196, 275–295 (2024). https://doi.org/10.1007/s12010-023-04558-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04558-y

Keywords

Navigation