Skip to main content
Log in

Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Global water scarcity and water pollution necessitate wastewater reclamation for further use. As an alternative to conventional techniques, membrane technology is extensively used as an advanced method for water purification and wastewater treatment due to its selectivity, permeability, and efficient removal of pollutants. However, microbial biofouling is a major threat that deteriorates membrane performance and imparts operational challenges. It is a natural phenomenon caused by the undesirable colonization of microbes on membrane surfaces. The economic penalties associated with this menace are enormous. The traditional preventive measures are dominated by biocides, toxic chemicals, cleaners and antifouling surfaces, which are costly and often cause secondary pollution. Recent focus is thus being directed to promote inputs from nanotechnology to control and mitigate this major threat. Different anti-microbial nanomaterials can be effectively used to prevent the adhesion of microbes onto the membrane surfaces and eliminate microbial biofilms, to provide an economical and eco-friendly solution to biofouling. This review addresses the formation of microbial biofilms and biofouling in membrane operations. The potential of nanocomposite membranes in alleviating this problem and the challenges in commercialization are discussed. The antifouling mechanisms are also highlighted, which are not widely elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Agrawal, A., Sharma, A., Awasthi, K. K., & Awasthi, A. (2021). Metal oxides nanocomposite membrane for biofouling mitigation in wastewater treatment. Materials Today Chemistry, 21, 100532.

    Article  CAS  Google Scholar 

  2. Wen, Y., Yuan, J., Ma, X., Wang, S., & Liu, Y. (2019). Polymeric nanocomposite membranes for water treatment: A review. Environmental Chemistry Letters, 17, 1539–1551.

    Article  CAS  Google Scholar 

  3. Awasthi, K., Choudhury, S., Komber, H., Simon, F., Formanek, P., et al. (2014). Functionalization oftrack-etched poly (ethylene terephthalate) membranes as a selective filter for hydrogen purification. International Journal of Hydrogen Energy, 39, 9356–9365.

    Article  CAS  Google Scholar 

  4. Bashambu, L., Singh, R., & Verma, J. (2021). Metal/metal oxide nanocomposite membranes for water purification. Material Today: Proceedings, 44, 538–545.

    CAS  Google Scholar 

  5. Mehrabi, Z., Taheri-Kafrani, A., Asadnia, M., & Razmjou, A. (2020). Bienzymatic modification of polymeric membranes to mitigate biofouling. Separation and Purification Technology, 237, 1–12.

    Article  Google Scholar 

  6. Tyagi, P. K., Singh, R. K., Vats, S., Kumar, D., Tyagi, S. (2012) Nanomaterials use in wastewater treatment. In: International Conference on Nanotechnology and Chemical Engineering (ICNCS'2012), (vol 1. pp. 65–68). Bangkok, Thailand.

  7. Tambe Patil, B. B. (2015). Wastewater treatment using nanoparticles. Journal of Advanced Chemical Engineering, 5, 131.

    Article  Google Scholar 

  8. Zhang, R., Liu, Y., He, M., Su, Y., Zhao, X., et al. (2016). Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chemical Society Reviews, 45, 5888–5924.

    Article  CAS  PubMed  Google Scholar 

  9. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.

    Article  CAS  PubMed  Google Scholar 

  10. Saraf, R. (2013). Cost effective and monodispersed zinc oxide nanoparticles synthesis and their characterization. International Journal of Advanced And Applied Sciences, 2, 85–88.

    Google Scholar 

  11. Carré, G., Hamon, E., Ennahar, S., Estner, M., Lett, M.-C., et al. (2014). TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Applied and Environment Microbiology, 80, 2573–2581.

    Article  Google Scholar 

  12. Ahamed, M., Alhadlaq, H. A., Khan, M., & M.A.l-Dhabi, N.A. (2014). Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. Journal of Nanomaterials, 2014, 637858.

    Article  Google Scholar 

  13. Leung, Y. H., Ng, A. M. C., Xu, X., Shen, Z., Gethings, L. A., et al. (2014). Mechanisms of Antibacterial Activity of MgO: Non-ROS MediatedToxicity of MgO Nanoparticles Towards Escherichia coli. Small (Weinheim an der Bergstrasse, Germany), 10, 1171–1183.

    Article  CAS  PubMed  Google Scholar 

  14. Botes, M., & Cloete, T. E. (2010). The potential of nanofibers and nanobiocides in water purification. Critical Reviews in Microbiology, 36, 68–81.

    Article  CAS  PubMed  Google Scholar 

  15. Firouzjaei, M. D., Seyedpour, S. F., Aktij, S. A., Giagnorio, M., Bazrafshan, N., et al. (2020). Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Scienc, 596, 117604.

    Article  CAS  Google Scholar 

  16. Archana, S., & Sundaramoorthy, B. (2019). Review on biofouling prevention using nanotechnology. Journal of Entomology and Zoology Studies, 7, 640–648.

    Google Scholar 

  17. Lahiri, D., Dash, S., Dutta, R., & Nag, M. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences, 44, 52.

    Article  PubMed  Google Scholar 

  18. Flemming, H. C. (1997). Reverse osmosis membrane biofouling. Experimental Thermal and Fluid Science, 14, 382–391.

    Article  CAS  Google Scholar 

  19. Nguyen, T., Roddick, F. A., & Fan, L. (2012). Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes, 2, 804–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abd El Aleem, F. A., Al-Sugair, K. A., & Alamad, M. I. (1998). Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia. International Biodeterioration and Biodegradation, 41, 19–23.

    Article  CAS  Google Scholar 

  21. Murphy, A. P., Moody, C. D., Riley, R. L., Lin, S. W., Murugaverl, B., & Rusin, P. (2001). Microbiological damage of cellulose acetate RO membranes. Journal of Membrane Science, 193, 111–121.

    Article  CAS  Google Scholar 

  22. Van der Kooij, D. (1992). Assimilable organic carbon as an indicator of bacterial regrowth. Journal‐American Water Works Association, 84, 57–65.

    Article  Google Scholar 

  23. Brouwer, H., Meesters, K., & van Groenestijn, J. (2006). Biofouling control in reverse osmosis membranes using rapid biofiltration technology. Desalination, 199, 15–17.

    Article  CAS  Google Scholar 

  24. Ho BP, Wu MW, Zeiher EHK, Chattoraj M (2004) Method of monitoring biofouling in membrane separation systems. U.S. Patent, Pub. No.: US 2004/0018583 A1.

  25. Mairal, A. P., Greenberg, A. R., & Krantz, W. B. (2000). Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectometry. Desalination, 130, 45–60.

    Article  CAS  Google Scholar 

  26. Teychene, B., Loulergue, P., Guigui, C., & Cabassud, C. (2011). Development and use of a novel method for inline characterization of fouling layers electrokinetic properties and for fouling monitoring. Journal of Membrane Science, 370, 45–57.

    Article  CAS  Google Scholar 

  27. Wolf, G., Crespo, J. G., & Reis, M. A. M. (2002). Optical and spectroscopic methods for biofilm examination and activity analysis in water and wastewater treatment. Reviews in Environmental Science & Biotechnology, 1, 227–251.

    Article  Google Scholar 

  28. Dutta, B., Nag, M., Lahiri, D., & Ray, R. R. (2021). Analysis of Biofilm Matrix by Multiplex Fluorescence In Situ Hybridization (M-FISH) and Confocal Laser Scanning Microscopy (CLSM) During Nosocomial Infections. In M. Nag & D. Lahiri (Eds.), Analytical Methodologies for Biofilm Research (pp. 183–203). Springer Protocols Handbooks.

    Chapter  Google Scholar 

  29. Surman, S. B., Walker, J. T., Goddart, D. T., Morton, L. H. G., Keevil, C. W., Weaver, W., et al. (1996). Comparison of microscope techniques for the examination of biofilms. Journal of Microbiol Methods, 25, 57–70.

    Article  Google Scholar 

  30. Dash, S., Lahiri, D., Nag, M., Das, D., & Ray, R. R. (2021). Probing the Surface-Attached In Vitro Microbial Biofilms with Atomic Force (AFM) and Scanning Probe Microscopy (SPM). In M. Nag & D. Lahiri (Eds.), Analytical Methodologies for Biofilm Research (pp. 223–241). Springer Protocols Handbooks.

    Chapter  Google Scholar 

  31. Gilbert, E. S., Khlebnikov, A., Meyer-Ilse, W., & Keasling, J. D. (1999). Use of soft X-ray microscopy for analysis of early-stage biofilm formation. Water Science and Technology, 39, 269–272.

    Article  Google Scholar 

  32. Stoodley, P., Wilson, S., Hall-Stoodley, L., Boyle, J. D., Lappin-Scott, M., & Costerton, J. W. (2001). Growth and detachment of cell clusters from mature mixed species biofilms. Applied and Environment Microbiology, 67, 5608–5613.

    Article  CAS  Google Scholar 

  33. Ivnitsky, H., Katz, I., Minz, D., Volvovic, G., Shimoni, E., Kesselman, E., et al. (2007). Bacteria community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Research, 41, 3924–3935.

    Article  CAS  PubMed  Google Scholar 

  34. Nag, M., Lahiri, D., Banerjee, R., Chatterjee, A., Ghosh, A., Banerjee, P., et al. (2021). Analysing Microbial Biofilm Formation at a Molecular Level: Role of Fourier Transform Infrared and Raman Spectroscopy. In M. Nag & D. Lahiri (Eds.), Analytical Methodologies for Biofilm Research (pp. 69–93). Springer Protocols Handbooks.

    Chapter  Google Scholar 

  35. Graft von der Schulenburg, D. A., Vrouwenvelder, J. S., Creber, S. A., van Loosdrecht, M. C. M., & Johns, M. L. (2008). Nuclear magnetic resonance microscopy studies of membrane biofouling. Journal of Membrane Science, 323, 37–44.

    Article  Google Scholar 

  36. Lahiri, D., Nag, M., Das, D., Chatterjee, S., Dey, A., & Ray, R. R. (2021). In Vitro Metabolite Profiling of Microbial Biofilm: Role of Gas Chromatography and High-Performance Liquid Chromatography. In M. Nag & D. Lahiri (Eds.), Analytical Methodologies for Biofilm Research (pp. 95–113). Springer Protocols Handbooks.

    Chapter  Google Scholar 

  37. Mukherjee, D., Garai, S., Lahiri, D., Nag, M., & Ray, R. R. (2021). Monitoring Cell Distribution and Death in Sessile Forms of Microbial Biofilm: Flow Cytometry-Fluorescence Activated Cell Sorting (FCM-FACS). In M. Nag & D. Lahiri (Eds.), Analytical Methodologies for Biofilm Research (pp. 299–316). Springer Protocols Handbooks.

    Chapter  Google Scholar 

  38. Olofsson, A. C., Hermansson, M., & Elwing, H. (2003). N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Applied and Environment Microbiology, 69, 4814–4822.

    Article  CAS  Google Scholar 

  39. Liu, Y., & Fang, H. H. P. (2003). Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Critical Reviews in Environment Science and Technology, 33, 237–373.

    Article  CAS  Google Scholar 

  40. Passow, U. (2002). Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 55, 287–333.

    Article  Google Scholar 

  41. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., et al. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110–125.

    Article  CAS  Google Scholar 

  42. Frerichs, H., Pütz, E., Pfitzner, F., Reich, T., Gazanis, A., et al. (2020). Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi doped cerium dioxide (Ce1−xBixO2−δ). Nanoscale, 12, 21344–21358.

    Article  CAS  PubMed  Google Scholar 

  43. Barrios, A. C., Carrillo, D., Waag, T. R., Rice, D., Bi, Y., et al. (2020). Prolonging the antibacterial activity of nanosilver coated membranes through partial sulfidation. Environmental Science: Nano, 7, 2607–2617.

    CAS  Google Scholar 

  44. Yu, Y., Yang, Yi., Yu, L., Koh, K. Y., & Chen, J. P. (2021). Modification of polyvinylidene fluoride membrane by silver nanoparticles-graphene oxide hybrid nanosheet for effective membrane biofouling mitigation. Chemosphere, 268, 129187.

    Article  CAS  PubMed  Google Scholar 

  45. Habib, Z., Khan, S. J., Ahmad, N. M., Shahzad, H. M. A., Jamal, Y., et al. (2020). Antibacterial behaviour of surface modified composite polyamide nanofiltration (NF) membrane by immobilizing Ag-doped TiO2 nanoparticles. Environmental Technology, 41, 3657–3669.

    Article  CAS  PubMed  Google Scholar 

  46. Jackson, J. C., Camargos, C. H. M., Noronha, V. T., Paula, A. J., Rezende, C. A., et al. (2021). Sustainable Cellulose Nanocrystals for Improved Antimicrobial Properties of Thin Film Composite Membranes. ACS Sustainable Chemistry & Engineering, 9, 6534–6540.

    Article  CAS  Google Scholar 

  47. Yi, M., Lau, C. H., Xiong, S., Wei, W., Liao, R., et al. (2019). Zwitterion-Ag Complexes That Simultaneously Enhance Biofouling Resistance and Silver Binding Capability of Thin Film Composite Membranes. ACS Applied Materials & Interfaces, 11, 15698–15708.

    Article  CAS  Google Scholar 

  48. Mozia, S., Sienkiewicz, P., Szyma´nski, K., Zgrzebnicki, M., Darowna, D., et al. (2019). Influence of Ag/titanate nanotubes on physicochemical, antifouling and antimicrobial properties of mixed-matrix polyethersulfone ultrafiltration membranes. Journal of Chemical Technology and Biotechnology, 94, 2497–2511.

    Article  CAS  Google Scholar 

  49. Zhang, X., Guo, Y., Wang, T., Wu, Z., & Wang, Z. (2020). Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. Water Research, 176, 115749.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, C., Nguyen, N. S., Li, X., McCarthy, D., & Wang, H. (2018). Tannic acid coating and in situ deposition of silver nanoparticles to improve the antifouling properties of an ultrafiltration membrane. Journal of Applied Polymer Science, 136, 47314.

    Article  Google Scholar 

  51. Fleming, M., Bouwer, E., & Chen, K. L. (2018). Biofouling Response of Laboratory-Scale Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles. Environmental Engineering Science, 36, 3.

    Google Scholar 

  52. Zhang, W., Yang, Y., Ziemann, E., Be’er, A., Muhammad, Y., et al. (2019). One-step sonochemical synthesis of a reduced graphene oxide - ZnO nanocomposite with antibacterial and antibiofouling properties. Environmental Science: Nano, 6, 3080–3090.

    CAS  Google Scholar 

  53. Beisl, S., Monteiro, S., Santos, R., Figueiredo, A. S., Sánchez-Loredo, M. G., et al. (2019). Synthesis and Bactericide Activity of Nanofiltration Composite Membranes - Cellulose Acetate/Silver Nanoparticles and Cellulose Acetate/Silver Ion Exchanged Zeolites. Water Research, 149, 225–231.

    Article  CAS  PubMed  Google Scholar 

  54. Yu, C., Wu, J., Zin, G., Luccio, M. D., Wenc, D., et al. (2018). D-Tyrosine loaded nanocomposite membranes for environmental-friendly, long-term biofouling control. Water Research, 130, 105–114.

    Article  CAS  PubMed  Google Scholar 

  55. Rahimpour, A., Seyedpour, S. F., Aktij, S. A., Firouzjaei, M. D., Zirehpour, A., et al. (2018). Simultaneous Improvement of Antimicrobial, Antifouling, and Transport Properties of Forward Osmosis Membranes with Immobilized Highly-Compatible Polyrhodanine Nanoparticles. Environmental Science and Technology, 52, 5246–5258.

    Article  CAS  PubMed  Google Scholar 

  56. Qi, L., Hu, Y., Liu, Z., An, X., & Bar-Zeev, E. (2018). Improved Anti-Biofouling Performance of Thin -Film Composite Forward-Osmosis Membranes Containing Passive and Active Moieties. Environmental Science and Technology, 52, 9684–9693.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou, Y., Maharubin, S., Tran, P., Reid, T., & Tan, G. Z. (2018). Anti-biofilm AgNP-polyaniline-polysulfone composite membrane activated by low intensity direct/alternating current. Environmental Science: Water Research & Technology, 4, 1511–1521.

    CAS  Google Scholar 

  58. Tengku Sallehuddin, T. N. A., & Abu Seman, M. N. (2017). Modification of Thin Film Composite Nanofiltration Membrane using Silver Nanoparticles: Preparation, Characterization and Antibacterial Performance. Journal of Membrane Science and Research, 3, 29–35.

    Google Scholar 

  59. Mukherjee, M., & De, S. (2015). Reduction of microbial contamination from drinking water using an iron oxide nanoparticle impregnated ultrafiltration mixed matrix membrane: Preparation, characterization and antimicrobial properties. Environmental Science: Water Research & Technology, 1, 204–217.

    CAS  Google Scholar 

  60. Tang, L., Livi, K. J. T., & Chen, K. L. (2015). Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in Situ To Mitigate Biofouling. Environmental Science & Technology Letters, 2, 59–65.

    Article  CAS  Google Scholar 

  61. Reis, R., Dumée, L.F., He, L., She, F., Orbell, J.D., et al. (2015). Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion. ACS Applied Materials & Interfaces, 7, 14644–14653.

    Article  CAS  Google Scholar 

  62. Andrade, P. F., de Faria, A. F., Oliveira, S. R., Arruda, M. A. Z., & do Carmo Gonçalves, M. (2015). Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Research, 15, 333–342.

    Article  Google Scholar 

  63. Sharma, M., Padmavathy, N., Remanan, S., Madrasc, G., & Bose, S. (2016). Facile one-pot scalable strategy to engineer biocidal silver nanocluster assembly on thiolated PVDF membranes for water purification. RSC Advances, 6, 38972–38983.

    Article  CAS  Google Scholar 

  64. Liu, Q., Zhou, Z., Qiu, G., Li, J., Xie, J., et al. (2015). Surface Reaction Route to Increase the Loading of Antimicrobial Ag Nanoparticles in Forward Osmosis Membranes. ACS Sustainable Chemisstry and Engineering, 3, 2959–2966.

    Article  CAS  Google Scholar 

  65. Travnickova, E., Mikula, P., Oprsal, J., Bohacova, M., Kubac, L., et al. (2019). Resazurin assay for assessment of antimicrobial properties of electrospun nanofiber filtration membranes. AMB Express, 9, 183.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Khorshidi, B., Biswas, I., Ghosh, T., Thundat, T., & Mohtada, S. (2018). Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Science and Reports, 8, 784.

    Article  Google Scholar 

  67. Díezl, B., Roldán, N., Martín, A., Sotto, A., Perdigón-Melón, J. A., et al. (2017). Fouling and biofouling resistance of metal-doped mesostructuredsilica/polyethersulfone ultrafiltration membranes. Journal of Membrane Science, 526, 252–263.

    Article  Google Scholar 

  68. Ghalamchi, L., Aber, S., Vatanpour, V., & Kian, M. (2019). A novel antibacterial mixed matrixed PES membrane fabricated from embedding aminated Ag3PO4/g-C3N4 nanocomposite for use in the membrane bioreactor. Journal of Industrial and Engineering Chemistry, 70, 412–426.

    Article  CAS  Google Scholar 

  69. Li, R., Ren, Y., Zhao, P., Wang, J., Liu, J., et al. (2019). Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 365, 606–614.

    Article  CAS  PubMed  Google Scholar 

  70. Faria, A. F., Liu, C., Xie, M., Perreault, F., & Nghiem, L. D. (2017). Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. Journal of Membrane Science, 525, 146–156.

    Article  CAS  Google Scholar 

  71. Haghighat, N., Vatanpour, V., Sheydaei, M., & Zahra Nikjavan, Z. (2020). Preparation of a novel polyvinyl chloride (PVC) ultrafiltration membrane modified with Ag/TiO2 nanoparticle with enhanced hydrophilicity and antibacterial activities. Separation and Purification Technology, 237, 116374.

    Article  CAS  Google Scholar 

  72. Huang, Z.-H., Yin, Y.-N., Aikebaier, G., & Zhang, Y. (2016). Preparation of a novel positively charged nanofiltration composite membrane incorporated with silver nanoparticles for pharmaceuticals and personal care product rejection and antibacterial properties. Water Science and Technology, 73, 1910–1919.

    Article  CAS  PubMed  Google Scholar 

  73. Liu, C., Faria, A. F., Ma, J., & Elimelech, M. (2017). Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles. Environmental Science and Technology, 51, 182–191.

    Article  CAS  PubMed  Google Scholar 

  74. Seyedpour, S. F., Rahimpour, A., & Najafpour, G. (2019). Facile in-situ assembly of silver-based MOFs to surface functionalization of TFC membrane: A novel approach toward long-lasting biofouling mitigation. Journal of Membrane Science, 573, 257–269.

    Article  CAS  Google Scholar 

  75. Ma, W., Soroush, A., Van Anh Luong, T., Brennan, G., & Rahaman, M. S. (2016). Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation. Water Research, 99, 188–199.

    Article  CAS  PubMed  Google Scholar 

  76. Sert, B., Gonca, S., Ozay, Y., Harputlu, E., & Ozdemir, S. (2021). Investigation of the antifouling properties of polyethersulfone ultrafiltration membranes by blending of boron nitride quantum dots. Colloids and Surfaces B, 205, 111867.

    Article  CAS  Google Scholar 

  77. Nag, M., Lahiri, D., Dey, A., Sarkar, T., Joshi, S., & Ray, R. R. (2021). Evaluation of algal active compounds as potent antibiofilm agent. Journal of Basic Microbiology, 2021, 1–12.

    Google Scholar 

  78. Dutta, B., Lahiri, D., Nag, M., Mukherjee, D., & Ray, R. R. (2021). Introduction to Bacterial Biofilm and Acute Infections. In R. R. Ray, M. Nag, & D. Lahiri (Eds.), Biofilm-Mediated Diseases: Causes and Controls (pp. 1–20). Springer.

    Google Scholar 

  79. Ray, R. R., Lahiri, D., Chatterjee, A., & Banerjee, P. (2021). Bacteria and Biofilms as Natural Inhabitants of Our Body. In R. R. Ray, M. Nag, & D. Lahiri (Eds.), Biofilm-Mediated Diseases: Causes and Controls (pp. 47–71). Springer.

    Chapter  Google Scholar 

  80. Ratha, B. N., Lahiri, D., & Ray, R. R. (2021). Inhibition of Biofilm Formation. In R. R. Ray, M. Nag, & D. Lahiri (Eds.), Biofilm-Mediated Diseases: Causes and Controls (pp. 209–237). Springer.

    Chapter  Google Scholar 

  81. Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., et al. (2021). Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Frontiers in Microbiology, 25, 636588.

    Article  Google Scholar 

  82. Nag, M., Lahiri, D., Sarkar, T., Ghosh, S., Dey, A., Edinur, H. A., et al. (2021). Microbial Fabrication of Nanomaterial and Its Role in Disintegration of Exopolymeric Matrices of Biofilm. Frontiers in Chemistry, 9, 690590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yin, J., Yang, Y., Hu, Z., & Deng, B. (2013). Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. Journal of Membrane Science, 441, 73–82.

    Article  CAS  Google Scholar 

  84. Kaner, P., Johnson, D. J., Seker, E., Hilal, N., & Altinkaya, S. A. (2015). Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO2 xerogels. Journal of Membrane Science, 493, 807–819.

    Article  CAS  Google Scholar 

  85. Hu, W., Chen, S., Li, X., Shi, S., Shen, W., et al. (2009). In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Materials Science and Engineering C, 29, 1216–1219.

    Article  CAS  Google Scholar 

  86. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., et al. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science and Technology, 39, 1378–1383.

    Article  CAS  PubMed  Google Scholar 

  87. Yang, C., Mamouni, J., Tang, Y., & Yang, L. (2010). Antimicrobial activity of single-walled carbon nanotubes: Length effect. Langmuir, 26, 16013–16019.

    Article  CAS  PubMed  Google Scholar 

  88. Kang, S., Pinault, M., Pfefferle, L. D., & Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 23, 8670–8673.

    Article  CAS  PubMed  Google Scholar 

  89. Manna, S. K., Sarkar, S., Barr, J., Wise, K., Barrera, E. V., et al. (2005). Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Letters, 5, 1676–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nano level. Science, 311, 622–627.

    Article  CAS  PubMed  Google Scholar 

  91. Pulskamp, K., Diabaté, S., & Krug, H. F. (2007). Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters, 168, 58–74.

    Article  CAS  PubMed  Google Scholar 

  92. Li, Y., Yuan, H., von demBussche, A., Creighton, M., Hurt, R. H., et al. (2013). Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National academy of Sciences of the United States of America, 110, 12295–12300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Krishnamoorthy, K., Veerapandian, M., Zhang, L.-H., Yun, K., & Kim, S. J. (2012). Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria via Lipid Peroxidation. Journal of Physical Chemistry C, 116, 17280–17287.

    Article  CAS  Google Scholar 

  94. Liang, S., Qi, G., Xiao, K., Sun, J., Giannelis, E. P., et al. (2014). Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors. Journal of Membrane Science, 463, 94–101.

    Article  CAS  Google Scholar 

  95. Tiraferri, A., Kang, Y., Giannelis, E. P., & Elimelech, M. (2012). Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface-Tailored Nanoparticles. ACS Applied Materials & Interfaces, 4, 5044–5053.

    Article  CAS  Google Scholar 

  96. Tiraferri, A., Kang, Y., Giannelis, E. P., & Elimelech, M. (2012). Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms. Environmental Science and Technology, 46, 11135–11144.

    Article  CAS  PubMed  Google Scholar 

  97. Liang, S., Kang, Y., Tiraferri, A., Giannelis, E. P., Huang, X., et al. (2013). Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles. ACS Applied Materials & Interfaces, 5, 6694–6703.

    Article  CAS  Google Scholar 

  98. Lejars, M., Margaillan, A., & Bressy, C. (2012). Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chemical Reviews, 112, 4347–4390.

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, X., Su, Y., Cao, J., Li, Y., Zhang, R., et al. (2015). Fabrication of antifouling polymer-inorganic hybrid membranes through the synergy of biomimetic mineralization and non-solvent induced phase separation. J. Mater. Chem. A., 3, 7287–7295.

    Article  CAS  Google Scholar 

  100. Zhao, X., Su, Y., Dai, H., Li, Y., Zhang, R., et al. (2015). Coordination-enabled synergistic surface segregation for fabrication of multi-defense mechanism membranes. Journal of Materials Chemistry A, 3, 3325–3331.

    Article  CAS  Google Scholar 

  101. Saleem, H., & Zaidi, S. J. (2020). Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 475, 114171.

    Article  CAS  Google Scholar 

  102. Akther, N., Phuntsho, S., Chen, Y., Ghaffour, N., & Shon, H. K. (2019). Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. Journal of Membrane Science, 584, 20–45.

    Article  CAS  Google Scholar 

  103. Nag, M., Lahiri, D., Dutta, B., Mukherjee, I., Ghosh, S., & Ray, R. R. (2021). Bacteriogenic silver nanoparticles: Mechanisms and applications. In S. Ghosh & T. J. Webstar (Eds.), Nanobiotechnology: Microbes and Plant Assisted Synthesis of Nanoparticles (pp. 61–74). Elsevier.

    Chapter  Google Scholar 

  104. Lahiri, D., Nag, M., Garai, S., Banerjee, R., Mukherjee, D., Dutta, B., et al. (2021). Mycosynthesis of silver nanoparticles: Mechanism and applications. In S. Ghosh & T. J. Webstar (Eds.), Nanobiotechnology: Microbes and Plant Assisted Synthesis of Nanoparticles (pp. 91–104). Elsevier.

    Chapter  Google Scholar 

  105. Nag, M., Lahiri, D., Mukherjee, D., Banerjee, R., Garai, S., & Sarkar, T. (2021). Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers, 13, 2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lahiri, D., Mukherjee, I., Ghosh, S., Biswas, S., Nag, M., & Ray, R. R. (2020). Green-synthesized Silver Nanoparticle as Effective Antibiofilm Agent. American Journal of Applied Bio-Technology Research, 1, 1–15.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search and drafting of the first manuscript were done by SS and MM jointly. SC and VR critically revised the work and enriched the draft with their valuable suggestions.

Corresponding author

Correspondence to Soham Chattopadhyay.

Ethics declarations

Ethical Approval

Not applicable for this review, as it does not involve any human or animal subject.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, S., Misra, M., Rangarajan, V. et al. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives. Appl Biochem Biotechnol 195, 5458–5477 (2023). https://doi.org/10.1007/s12010-023-04497-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04497-8

Keywords

Navigation