Skip to main content
Log in

13-Cis Retinoic Acid Induces Neuronal Differentiation in Daoy (Medulloblastoma) Cells Through Epigenetic Regulation of Topoisomerase IIβ

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Medulloblastoma (MB) is a malignant tumor of the cerebellum that occurs in children and infants. Abnormal neuronal differentiation can lead to brain tumors, and topoisomerase IIβ (Top IIβ) plays an important role in neuronal differentiation. The aim of this study was to investigate the molecular mechanism of 13-cis retinoic acid (13-cis RA) promoting the expression of Top IIβ and inducing neuronal differentiation in human MB Daoy cells. The results showed that 13-cis RA inhibited the cell proliferation and induced cell cycle arrest in G0/G1 phase. The cells differentiated into a neuronal phenotype, with high expression of the neuronal marker microtubule-associated protein 2 (MAP2) and abundant Top IIβ, and obvious neurite growth. Chromatin immunoprecipitation (ChIP) assay showed that histone H3 lysine 27 tri-methylation (H3K27me3) modification in Top IIβ promoter decreased after 13-cis RA-induced cell differentiation, while jumonji domain-containing protein 3 (JMJD3) binding in Top IIβ promoter increased. These results suggest that H3K27me3 and JMJD3 can regulate the expression of Top IIβ gene, which is related to inducing neural differentiation. Our results provide new insights into understanding the regulatory mechanisms of Top IIβ during neuronal differentiation and imply the potential application of 13-cis RA in the clinical treatment of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

Abbreviations

13-cis RA:

13-Cis retinoic acid

Top IIβ:

Topoisomerase IIβ

MAP2:

Microtubule-associated protein 2

ChIP:

Chromatin immunoprecipitation

H3K27me3:

Histone H3 lysine 27 tri-methylation

JMJD3:

Jumonji domain-containing protein 3

MB:

Medulloblastoma

CNS:

Central nervous system

DMB:

Desmoplastic medulloblastoma

References

  1. Khatua, S., Song, A., Citla Sridhar, D., & Mack, S. C. (2018). Childhood medulloblastoma: Current therapies, emerging molecular landscape and newer therapeutic insights. Current Neuropharmacology, 16, 1045–1058. https://doi.org/10.2174/1570159X15666171129111324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beccaria, K., Padovani, L., Bouchoucha, Y., & Doz, F. (2021). Current treatments of medulloblastoma. Current Opinion in Oncology, 33, 615–620. https://doi.org/10.1097/CCO.0000000000000788

    Article  CAS  PubMed  Google Scholar 

  3. Menyhart, O., & Gyorffy, B. (2020). Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer and Metastasis Reviews, 39, 211–233. https://doi.org/10.1007/s10555-020-09854-1

    Article  PubMed  Google Scholar 

  4. Yi, J., Shi, X., Xuan, Z., & Wu, J. (2021). Histone demethylase UTX/KDM6A enhances tumor immune cell recruitment, promotes differentiation and suppresses medulloblastoma. Cancer Letters, 499, 188–200. https://doi.org/10.1016/j.canlet.2020.11.031

    Article  CAS  PubMed  Google Scholar 

  5. Madabhushi, R. (2018). The roles of DNA topoisomerase IIbeta in transcription. Internationl Journal of Molecular Sciences 19, 1917. https://doi.org/10.3390/ijms19071917

  6. Thakurela, S., Garding, A., Jung, J., Schubeler, D., Burger, L., & Tiwari, V. K. (2013). Gene regulation and priming by topoisomerase IIalpha in embryonic stem cells. Nature Communications, 4, 2478. https://doi.org/10.1038/ncomms3478

    Article  CAS  PubMed  Google Scholar 

  7. Zaim, M., & Isik, S. (2018). DNA topoisomerase IIbeta stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression. Stem Cell Research & Therapy, 9, 114. https://doi.org/10.1186/s13287-018-0859-4

    Article  CAS  Google Scholar 

  8. Yan, Y., Zhao, J., Cao, C., Jia, Z., Zhou, N., Han, S., Wang, Y., Xu, Y., Zhao, J., Yan, Y., & Cui, H. (2014). Tetramethylpyrazine promotes SH-SY5Y cell differentiation into neurons through epigenetic regulation of Topoisomerase IIbeta. Neuroscience, 278, 179–193. https://doi.org/10.1016/j.neuroscience.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y., Zhao, J., Cao, C., Yan, Y., Chen, J., Feng, F., Zhou, N., Han, S., Xu, Y., Zhao, J., Yan, Y., & Cui, H. (2018). The role of E2F1-topoIIbeta signaling in regulation of cell cycle exit and neuronal differentiation of human SH-SY5Y cells. Differentiation, 104, 1–12. https://doi.org/10.1016/j.diff.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  10. Miyahara, H., Natsumeda, M., Kanemura, Y., Yamasaki, K., Riku, Y., Akagi, A., Oohashi, W., Shofuda, T., Yoshioka, E., Sato, Y., Taga, T., Naruke, Y., Ando, R., Hasegawa, D., Yoshida, M., Sakaida, T., Okada, N., Watanabe, H., Ozeki, M., … Iwasaki, Y. (2021). Topoisomerase IIbeta immunoreactivity (IR) co-localizes with neuronal marker-IR but not glial fibrillary acidic protein-IR in GLI3-positive medulloblastomas: An immunohistochemical analysis of 124 medulloblastomas from the Japan Children’s Cancer Group. Brain Tumor Pathology, 38, 109–121. https://doi.org/10.1007/s10014-021-00396-0

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J., Zhao, J., Zhou, X., Liu, S., Yan, Y., Wang, Y., Cao, C., Han, S., Zhou, N., Xu, Y., Zhao, J., Yan, Y., & Cui, H. (2017). Immunohistochemical investigation of topoIIbeta, H3K27me3 and JMJD3 expressions in medulloblastoma. Pathology, Research and Practice, 213, 975–981. https://doi.org/10.1016/j.prp.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  12. Huang, M. E., Ye, Y. C., Chen, S. R., Chai, J. R., & Wang, Z. Y. (1989). Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Haematology and Blood Transfusion, 32, 88–96. https://doi.org/10.1007/978-3-642-74621-5_14

    Article  CAS  PubMed  Google Scholar 

  13. Bremner, J. D., Shearer, K. D., & McCaffery, P. J. (2012). Retinoic acid and affective disorders: The evidence for an association. Journal of Clinical Psychiatry, 73, 37–50. https://doi.org/10.4088/JCP.10r05993

    Article  CAS  PubMed  Google Scholar 

  14. Tosun, M., Soysal, Y., Mas, N. G., & Karabekir, H. S. (2015). Comparison of the effects of 13-cis retinoic acid and melatonin on the viabilities of SH-SY5Y neuroblastoma cell line. Journal of Korean Neurosurgical Association, 57, 147–151. https://doi.org/10.3340/jkns.2015.57.3.147

    Article  CAS  Google Scholar 

  15. Brodeur, G. M. (2003). Neuroblastoma: Biological insights into a clinical enigma. Nature Reviews Cancer, 3, 203–216. https://doi.org/10.1038/nrc1014

    Article  CAS  PubMed  Google Scholar 

  16. Sato, Y., Kurosawa, H., Sakamoto, S., Kuwashima, S., Hashimoto, T., Okamoto, K., Tsuchioka, T., Fukushima, K., & Arisaka, O. (2015). Usefulness of 18F-fluorodeoxyglucose positron emission tomography for follow-up of 13-cis-retinoic acid treatment for residual neuroblastoma after myeloablative chemotherapy. Medicine (Baltimore), 94, e1290. https://doi.org/10.1097/MD.0000000000001290

    Article  CAS  PubMed  Google Scholar 

  17. Yan, Y. X., Zhao, J. X., Han, S., Zhou, N. J., Jia, Z. Q., Yao, S. J., Cao, C. L., Wang, Y. L., Xu, Y. N., Zhao, J., Yan, Y. L., & Cui, H. X. (2015). Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIbeta pathway. European Journal of Cell Biology, 94, 626–641. https://doi.org/10.1016/j.ejcb.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  18. Ferrari-Toninelli, G., Bonini, S. A., Uberti, D., Buizza, L., Bettinsoli, P., Poliani, P. L., Facchetti, F., & Memo, M. (2010). Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells. Neuro-Oncology, 12, 1231–1243. https://doi.org/10.1093/neuonc/noq101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rossi, A., Russo, G., Puca, A., La Montagna, R., Caputo, M., Mattioli, E., Lopez, M., Giordano, A., & Pentimalli, F. (2009). The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. International Journal of Cancer, 125, 235–243. https://doi.org/10.1002/ijc.24331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chlapek, P., Neradil, J., Redova, M., Zitterbart, K., Sterba, J., & Veselska, R. (2014). The ATRA-induced differentiation of medulloblastoma cells is enhanced with LOX/COX inhibitors: An analysis of gene expression. Cancer Cell International, 14, 51. https://doi.org/10.1186/1475-2867-14-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patties, I., Kortmann, R. D., Menzel, F., & Glasow, A. (2016). Enhanced inhibition of clonogenic survival of human medulloblastoma cells by multimodal treatment with ionizing irradiation, epigenetic modifiers, and differentiation-inducing drugs. Journal of Experimental & Clinical Cancer Research, 35, 94. https://doi.org/10.1186/s13046-016-0376-1

    Article  CAS  Google Scholar 

  22. Nomura, M., Shimbo, T., Miyamoto, Y., Fukuzawa, M., & Kaneda, Y. (2013). 13-Cis retinoic acid can enhance the antitumor activity of non-replicating Sendai virus particle against neuroblastoma. Cancer Science, 104, 238–244. https://doi.org/10.1111/cas.12063

    Article  CAS  PubMed  Google Scholar 

  23. Chuang, H. C., Lin, H. Y., Liao, P. L., Huang, C. C., Lin, L. L., Hsu, W. M., & Chuang, J. H. (2020). Immunomodulator polyinosinic-polycytidylic acid enhances the inhibitory effect of 13-cis-retinoic acid on neuroblastoma through a TLR3-related immunogenic-apoptotic response. Laboratory Investigation, 100, 606–618. https://doi.org/10.1038/s41374-019-0356-0

    Article  CAS  PubMed  Google Scholar 

  24. Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411, 342–348. https://doi.org/10.1038/35077213

    Article  CAS  PubMed  Google Scholar 

  25. Jauhari, A., Singh, T., Singh, P., Parmar, D., & Yadav, S. (2018). Regulation of miR-34 family in neuronal development. Molecular Neurobiology, 55, 936–945. https://doi.org/10.1007/s12035-016-0359-4

    Article  CAS  PubMed  Google Scholar 

  26. Marzinke, M. A., & Clagett-Dame, M. (2012). The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells. Experimental Cell Research, 318, 85–93. https://doi.org/10.1016/j.yexcr.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  27. Ognibene, M., & Pezzolo, A. (2020). Ezrin interacts with the tumor suppressor CHL1 and promotes neuronal differentiation of human neuroblastoma. PLoS One, 15, e0244069. https://doi.org/10.1371/journal.pone.0244069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bollimpelli, V. S., Dholaniya, P. S., & Kondapi, A. K. (2017). Topoisomerase IIbeta and its role in different biological contexts. Archives of Biochemistry and Biophysics, 633, 78–84. https://doi.org/10.1016/j.abb.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  29. Yeman, K. B., & Isik, S. (2021). Down regulation of DNA topoisomerase IIbeta exerts neurodegeneration like effect through Rho GTPases in cellular model of Parkinson’s disease by down regulating tyrosine hydroxylase. Neurological Research, 43, 464–473. https://doi.org/10.1080/01616412.2020.1867949

    Article  CAS  PubMed  Google Scholar 

  30. Sun, J., Yang, J., Miao, X., Loh, H. H., Pei, D., & Zheng, H. (2021). Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. Cell Regeneration, 10, 7. https://doi.org/10.1186/s13619-020-00070-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dixit, D., Prager, B. C., Gimple, R. C., Poh, H. X., Wang, Y., Wu, Q., Qiu, Z., Kidwell, R. L., Kim, L. J. Y., Xie, Q., Vitting-Seerup, K., Bhargava, S., Dong, Z., Jiang, L., Zhu, Z., Hamerlik, P., Jaffrey, S. R., Zhao, J. C., Wang, X., & Rich, J. N. (2021). The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discovery, 11, 480–499. https://doi.org/10.1158/2159-8290.CD-20-0331

    Article  CAS  PubMed  Google Scholar 

  32. Ziffra, R. S., Kim, C. N., Ross, J. M., Wilfert, A., Turner, T. N., Haeussler, M., Casella, A. M., Przytycki, P. F., Keough, K. C., Shin, D., Bogdanoff, D., Kreimer, A., Pollard, K. S., Ament, S. A., Eichler, E. E., Ahituv, N., & Nowakowski, T. J. (2021). Single-cell epigenomics reveals mechanisms of human cortical development. Nature, 598, 205–213. https://doi.org/10.1038/s41586-021-03209-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strejczek, A., Woszczyk, D., Urbaniak, H., Rozanska, M., Robakm, M., Matuszewska, Z., Barciszewska, A. M. (2021). Epigenetic-based therapy-A prospective chance for medulloblastoma patients’ recovery. International Journal of Molecular Sciences, 22, 4925. https://doi.org/10.3390/ijms22094925

  34. Badodi, S., Pomella, N., Zhang, X., Rosser, G., Whittingham, J., Niklison-Chirou, M. V., Lim, Y. M., Brandner, S., Morrison, G., Pollard, S. M., Bennett, C. D., Clifford, S. C., Peet, A., Basson, M. A., & Marino, S. (2021). Inositol treatment inhibits medulloblastoma through suppression of epigenetic-driven metabolic adaptation. Nature Communications, 12, 2148. https://doi.org/10.1038/s41467-021-22379-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shiraishi, R., & Kawauchi, D. (2021). Epigenetic regulation in medulloblastoma pathogenesis revealed by genetically engineered mouse models. Cancer Science, 112, 2948–2957. https://doi.org/10.1111/cas.14990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohn, F., Weber, M., Rebhan, M., Roloff, T. C., Richter, J., Stadler, M. B., Bibel, M., & Schubeler, D. (2008). Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Molecular Cell, 30, 755–766. https://doi.org/10.1016/j.molcel.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  37. Testa, G. (2011). The time of timing: How Polycomb proteins regulate neurogenesis. BioEssays, 33, 519–528. https://doi.org/10.1002/bies.201100021

    Article  CAS  PubMed  Google Scholar 

  38. Akizu, N., Estaras, C., Guerrero, L., Marti, E., & Martinez-Balbas, M. A. (2010). H3K27me3 regulates BMP activity in developing spinal cord. Development, 137, 2915–2925. https://doi.org/10.1242/dev.049395

    Article  CAS  PubMed  Google Scholar 

  39. Burgold, T., Spreafico, F., Santa, F. D., Totaro, M. G., Prosperini, E., Natoli, G., & Testa, G. (2008). The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLOS ONE. https://doi.org/10.1371/journal.pone.0003034

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shi, X. M., Zhang, Z. L., Zhan, X. M., Cao, M., Satoh, T., Akira, S., Shpargel, K., Magnuson, T., Li, Q. T., Wang, R. F., Wang, C. C., Ge, K., Wu, J. (2014). An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nature Communications, 5, 5425. https://doi.org/10.1038/ncomms6425

  41. Tran, N., Broun, A., Ge, K. (2020). Lysine demethylase KDM6A in differentiation, development, and cancer. Molecular and Cellular Biology, 40, e00341-20. https://doi.org/10.1128/MCB.00341-20

Download references

Funding

The work was supported by the University Science and Technology Research Project of Hebei Province (QN2017107).

Author information

Authors and Affiliations

Authors

Contributions

Jing Chen: conceptualization, methodology, writing—original draft, formal analysis. Jing-Xia Zhang: methodology, formal analysis, validation. Hai-Xia Lei: methodology, validation. Xing-Yu Li: data curation, formal analysis. Yong-Xin Yan: formal analysis, validation. Yan-Ling Wang: methodology, data curation. Yu-Hong Lv: funding acquisition, resources. Yun-Li Yan: project administration. Yu-Hua Lei: writing—reviewing and editing, supervision, project administration.

Corresponding author

Correspondence to Yu-Hua Lei.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 102 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, JX., Lei, HX. et al. 13-Cis Retinoic Acid Induces Neuronal Differentiation in Daoy (Medulloblastoma) Cells Through Epigenetic Regulation of Topoisomerase IIβ. Appl Biochem Biotechnol 195, 7429–7445 (2023). https://doi.org/10.1007/s12010-023-04476-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04476-z

Keywords

Navigation