Skip to main content
Log in

Leukemia-derived Exosomes Can Induce Responses Related to Tumorigenesis on Non-tumoral Astrocytes

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cancer is the second cause of disability and death worldwide. Identifying communication between cancer cells and normal cells can shed light on the underlying metastatic mechanisms. Among different suspected mechanisms, exosomes derived from cancer cells have been introduced as a main key player in metastatic processes. To this point, we evaluated the effects of exosomes derived from the leukemia nalm6 cell line on astrocytes behavior, such as proliferation and inflammatory pathways. To assess astrocyte responses, data were obtained by MTT, Annexin/PI to indicate proliferation and apoptosis. Further analyses were performed by Real-time PCR and western blot to assess the expression of IL6, IL1β, NFkβ, TNFα, and aquaporin-4 (AQP4). Our results demonstrated that the proliferation of astrocytes was significantly increased when treated with exosomes derived from Nalm6 cells. We also found that the expression of IL6, IL1β, NFkβ, and TNFα were significantly increased at the mRNA level when exposed to exosomes derived from Nalm6 cells. Finally, the mRNA and protein levels of AQP4 were profoundly increased after being treated by exosomes derived from Nalm6 cells. To sum up, our data indicated that the secretion of cancer cells could induce responses related to tumorigenesis. However, further studies on this topic are warranted to clarify exosomes’ role in metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Brada, M. (2001). Pathology and genetics of tumours of the nervous system. British Journal of Cancer, 84(1), 148.

    Article  PubMed Central  Google Scholar 

  • Chai, H., Diaz-Castro, B., Shigetomi, E., Monte, E., Octeau, J. C., Yu, X., Cohn, W., Rajendran, P. S., Vondriska, T. M., & Whitelegge, J. P. (2017). Neural circuit-specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence. Neuron, 95(3), 531–549. e539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran, V. I., Welinder, C., de Oliveira, K. G., Cerezo-Magaña, M., Månsson, A. S., Johansson, M. C., Marko-Varga, G., & Belting, M. (2019). Global extracellular vesicle proteomic signature defines U87-MG glioma cell hypoxic status with potential implications for non-invasive diagnostics. Journal of neuro-oncology, 144(3), 477–488.

  • Choi, S. S., Lee, H. J., Lim, I., Satoh, J., & Kim, S. U. (2014). Human astrocytes: Secretome profiles of cytokines and chemokines.PloS One, 9(4), e92325.

  • Dabrowska, S., Del Fattore, A., Karnas, E., Frontczak-Baniewicz, M., Kozlowska, H., Muraca, M., Janowski, M., & Lukomska, B. (2018). Imaging of extracellular vesicles derived from human bone marrow mesenchymal stem cells using fluorescent and magnetic labels. International Journal of Nanomedicine, 13, 1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominkuš, P. P., Stenovec, M., Sitar, S., Lasič, E., Zorec, R., Plemenitaš, A., Žagar, E., Kreft, M., & Lenassi, M. (2018). PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1860(6), 1350–1361.

    Article  Google Scholar 

  • Fukuda, A. M., & Badaut, J. (2012). Aquaporin 4: A player in cerebral edema and neuroinflammation. Journal of neuroinflammation, 9(1), 279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 51(1), 27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraj, R. L., Azimullah, S., Beiram, R., Jalal, F. Y., & Rosenberg, G. A. (2019). Neuroinflammation: Friend and foe for ischemic stroke. Journal of neuroinflammation, 16(1), 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, D. E., O’Keefe, R. A., & Grandis, J. R. (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews Clinical Oncology, 15(4), 234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinjyo, I., Bragin, D., Grattan, R., Winter, S. S., & Wilson, B. S. (2019). Leukemia-derived exosomes and cytokines pave the way for entry into the brain. Journal of leukocyte biology, 105(4), 741–753.

    Article  CAS  PubMed  Google Scholar 

  • Kioka, N., Minami, K., Tamura, A., & Yoshikawa, N. (2012). Chemokine expression in human astrocytes in response to shiga toxin 2. International journal of inflammation, 2012.

  • Lan, Y. L., Wang, X., Lou, J. C., Ma, X. C., & Zhang, B. (2017). The potential roles of aquaporin 4 in malignant gliomas. Oncotarget, 8(19), 32345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, M. H., Lin, Y. S., Sheu, S. Y., & Sun, J. S. (2009). Anti-inflammatory effects of daidzein on primary astroglial cell culture. Nutritional Neuroscience, 12(3), 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Mao, J., Wang, T., & Fu, X. (2017). Downregulation of aquaporin-4 protects brain against hypoxia ischemia via anti-inflammatory mechanism. Molecular Neurobiology, 54(8), 6426–6435.

    Article  CAS  PubMed  Google Scholar 

  • Mader, S., & Brimberg, L. (2019). Aquaporin-4 water channel in the brain and its implication for health and disease. Cells, 8(2), 90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, C. A., Ibrahim, M., Kapila, A., & Bajaj, K. (2018). Glioblastoma Multiforme in a Patient with Multiple Myeloma: A Case Report and Literature Review. The Permanente journal, 22.

  • Morad, G., Otu, H. H., Dillon, S. T., & Moses, M. A. (2018). Using proteomics profiling to elucidate the interactions of breast cancer-derived exosomes with the blood-brain barrier. In: AACR.

  • Othman, N., Jamal, R., & Abu, N. (2019). Cancer-derived exosomes as effectors of key inflammation-related players. Frontiers in immunology, 10, 2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos, M., Saadoun, S., Binder, D., Manley, G., Krishna, S., & Verkman, A. (2004). Molecular mechanisms of brain tumor edema. Neuroscience, 129(4), 1009–1018.

    Article  Google Scholar 

  • Park, H., Ahn, S. H., Jung, Y., Yoon, J. C., & Choi, Y. H. (2017). Leptin suppresses glutamate-induced apoptosis through regulation of ERK1/2 signaling pathways in rat primary astrocytes. Cellular Physiology and Biochemistry, 44(6), 2117–2128.

    Article  CAS  PubMed  Google Scholar 

  • Placone, A. L., Quiñones-Hinojosa, A., & Searson, P. C. (2016). The role of astrocytes in the progression of brain cancer: Complicating the picture of the tumor microenvironment. Tumor Biology, 37(1), 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Raimondo, S., Saieva, L., Corrado, C., Fontana, S., Flugy, A., Rizzo, A., De Leo, G., & Alessandro, R. (2015). Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism. Cell Communication and Signaling, 13(1), 1–12.

    Article  Google Scholar 

  • Salarpour, S., Forootanfar, H., Pournamdari, M., Ahmadi-Zeidabadi, M., Esmaeeli, M., & Pardakhty, A. (2019). Paclitaxel incorporated exosomes derived from glioblastoma cells: Comparative study of two loading techniques. DARU Journal of Pharmaceutical Sciences, 27(2), 533–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, S., Rasool, H. I., Palanisamy, V., Mathisen, C., Schmidt, M., Wong, D. T., & Gimzewski, J. K. (2010). Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS nano, 4(4), 1921–1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X. Y., Gao, Z. K., Han, Y., Yuan, M., Guo, Y. S., & Bi, X. (2021). Activation and role of astrocytes in ischemic stroke.Frontiers in Cellular Neuroscience, 15.

  • Silver, D. J., & Steindler, D. A. (2009). Common astrocytic programs during brain development, injury and cancer. Trends in neurosciences, 32(6), 303–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova, V., Ludwig, A. K., Hornung, S., Rotan, O., Horn, P. A., Epple, M., & Giebel, B. (2011). Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces B: Biointerfaces, 87(1), 146–150.

    Article  CAS  PubMed  Google Scholar 

  • Wrobel, J. K., & Toborek, M. (2016). Blood-brain barrier remodeling during brain metastasis formation. Molecular Medicine, 22(1), 32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J., Ding, D., Wang, X., Li, Q., Sun, Y., Li, L., & Wang, Y. (2019). Regulation of aquaporin 4 expression by lipoxin A4 in astrocytes stimulated by lipopolysaccharide. Cellular immunology, 344, 103959.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Lu, J., Shao, A., Zhang, J. H., & Zhang, J. (2020). Glial cells: Role of the immune response in ischemic stroke. Frontiers in immunology, 11, 294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X., Chen, R., Liu, M., Feng, J., Chen, J., & Hu, K. (2017). Remodeling the blood–brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharmaceutica Sinica B, 7(5), 541–553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, F., Wen, Y., Jin, R., & Chen, H. (2019). New attempts for central nervous infiltration of pediatric acute lymphoblastic leukemia. Cancer and Metastasis Reviews, 38(4), 657–671.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Fatemeh Tara, Head of Ommolbanin Hospital.

Funding

The authors received no financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Baharara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in this study were by the ethical standards of the Ethical Committee in the Islamic Azad University of Mashhad with IR.IAU.MSHD.REC.1397.092 approval ID.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmati, P.Z., Baharara, J., Sahab-Negah, S. et al. Leukemia-derived Exosomes Can Induce Responses Related to Tumorigenesis on Non-tumoral Astrocytes. Appl Biochem Biotechnol 195, 7624–7637 (2023). https://doi.org/10.1007/s12010-023-04428-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04428-7

Keywords

Navigation