Skip to main content

Advertisement

Log in

Targeted Inhibition of Hsp90 in Combination with Metformin Modulates Programmed Cell Death Pathways in A549 Lung Cancer Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The pathophysiology of lung cancer is dependent on the dysregulation in the apoptotic and autophagic pathways. The intricate link between apoptosis and autophagy through shared signaling pathways complicates our understanding of how lung cancer pathophysiology is regulated. As drug resistance is the primary reason behind treatment failure, it is crucial to understand how cancer cells may respond to different therapies and integrate crosstalk between apoptosis and autophagy in response to them, leading to cell death or survival. Thus, in this study, we have tried to evaluate the crosstalk between autophagy and apoptosis in A549 lung cancer cell line that could be modulated by employing a combination therapy of metformin (6 mM), an anti-diabetic drug, with gedunin (12 µM), an Hsp90 inhibitor, to provide insights into the development of new cancer therapeutics. Our results demonstrated that metformin and gedunin were cytotoxic to A549 lung cancer cells. Combination of metformin and gedunin generated ROS and promoted MMP loss and DNA damage. The combination further increased the expression of AMPKα1 and promoted the nuclear localization of AMPKα1/α2. The expression of Hsp90 was downregulated, further decreasing the expression of its clients, EGFR, PIK3CA, AKT1, and AKT3. Inhibition of the EGFR/PI3K/AKT pathway upregulated TP53 and inhibited autophagy. The combination was promoting nuclear localization of p53; however, some cytoplasmic signals were also detected. Further increase in the expression of caspase 9 and caspase 3 was observed. Thus, we concluded that the combination of metformin and gedunin upregulates apoptosis by inhibiting the EGFR/PI3K/AKT pathway and autophagy in A549 lung cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References 

  1. AACR Project GENIE Consortium. (2017). AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer discovery, 7(8), 818–831. https://doi.org/10.1158/2159-8290.CD-17-0151

    Article  Google Scholar 

  2. Anderson, E., Havener, T. M., Zorn, K. M., Foil, D. H., Lane, T. R., Capuzzi, S. J., Morris, D., Hickey, A. J., Drewry, D. H., & Ekins, S. (2020). Synergistic drug combinations and machine learning for drug repurposing in chordoma. Scientific reports, 10(1), 12982. https://doi.org/10.1038/s41598-020-70026-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arias, E., & Cuervo, A. M. (2011). Chaperone-mediated autophagy in protein quality control. Current Opinion in Cell Biology, 23(2), 184–189. https://doi.org/10.1016/j.ceb.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Bayat Mokhtari, R., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., & Yeger, H. (2017). Combination therapy in combating cancer. Oncotarget, 8(23), 38022–38043. https://doi.org/10.18632/oncotarget.16723

    Article  PubMed  Google Scholar 

  5. Ben Sahra, I., Regazzetti, C., Robert, G., Laurent, K., Le Marchand-Brustel, Y., Auberger, P., Tanti, J. F., Giorgetti-Peraldi, S., & Bost, F. (2011). Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer research, 71(13), 4366–4372. https://doi.org/10.1158/0008-5472.CAN-10-1769

    Article  CAS  PubMed  Google Scholar 

  6. Bolte, S., & Cordelières, F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 224(Pt 3), 213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  7. Bridges, H. R., Jones, A. J., Pollak, M. N., & Hirst, J. (2014). Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. The Biochemical journal, 462(3), 475–487. https://doi.org/10.1042/BJ20140620

    Article  CAS  PubMed  Google Scholar 

  8. Budanov, A. V., & Karin, M. (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 134(3), 451–460. https://doi.org/10.1016/j.cell.2008.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cai, X., & Liu, X. (2008). Inhibition of Thr-55 phosphorylation restores p53 nuclear localization and sensitizes cancer cells to DNA damage. Proceedings of the National Academy of Sciences USA, 105(44), 16958–16963. https://doi.org/10.1073/pnas.0804608105

    Article  Google Scholar 

  10. Chen, K., Qian, W., Li, J., Jiang, Z., Cheng, L., Yan, B., Cao, J., Sun, L., Zhou, C., Lei, M., Duan, W., Ma, J., Ma, Q., & Ma, Z. (2017). Loss of AMPK activation promotes the invasion and metastasis of pancreatic cancer through an HSF1-dependent pathway. Molecular Oncology, 11(10), 1475–1492. https://doi.org/10.1002/1878-0261.12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, D., Wang, Y., Wu, K., & Wang, X. (2018). Dual effects of metformin on adipogenic differentiation of 3T3-L1 preadipocyte in AMPK-dependent and independent manners. International Journal of Molecular Sciences, 19(6), 1547. https://doi.org/10.3390/ijms19061547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng, M. H., Huang, H. L., Lin, Y. Y., Tsui, K. H., Chen, P. C., Cheng, S. Y., Chong, I. W., Sung, P. J., Tai, M. H., Wen, Z. H., Chen, N. F., & Kuo, H. M. (2019). BA6 induces apoptosis via stimulation of reactive oxygen species and inhibition of oxidative phosphorylation in human lung cancer cells. Oxidative Medicine and Cellular Longevity, 2019, 6342104. https://doi.org/10.1155/2019/6342104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cho, D. H., Jo, Y. K., Hwang, J. J., Lee, Y. M., Roh, S. A., & Kim, J. C. (2009). Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Letters, 274(1), 95–100. https://doi.org/10.1016/j.canlet.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  14. Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  15. Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research, 70(2), 440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

    Article  CAS  PubMed  Google Scholar 

  16. Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10(2), 86–103. https://doi.org/10.1379/csc-99r.1

    Article  CAS  Google Scholar 

  17. Colell, A., Ricci, J. E., Tait, S., Milasta, S., Maurer, U., Bouchier-Hayes, L., Fitzgerald, P., Guio-Carrion, A., Waterhouse, N. J., Li, C. W., Mari, B., Barbry, P., Newmeyer, D. D., Beere, H. M., & Green, D. R. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 129(5), 983–997. https://doi.org/10.1016/j.cell.2007.03.045

    Article  CAS  PubMed  Google Scholar 

  18. Corazzari, M., Gagliardi, M., Fimia, G. M., & Piacentini, M. (2017). Endoplasmic reticulum stress, unfolded protein response, and cancer cell fatE. Frontiers in Oncology, 7, 78. https://doi.org/10.3389/fonc.2017.00078

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cordelieres, F. P., Bolte, S. (2008). JACoP v2. 0: Improving the user experience with co-localization studies. Proceedings of the 2nd ImageJ user and developer conference pp. 6–7.

  20. Daugan, M., Dufaÿ Wojcicki, A., d’Hayer, B., & Boudy, V. (2016). Metformin: An anti-diabetic drug to fight cancer. Pharmacological Research, 113(Pt A), 675–685. https://doi.org/10.1016/j.phrs.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  21. Deng, J., Peng, M., Wang, Z., Zhou, S., Xiao, D., Deng, J., Yang, X., Peng, J., & Yang, X. (2019). Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Science, 110(1), 23–30. https://doi.org/10.1111/cas.13849

    Article  CAS  PubMed  Google Scholar 

  22. Dice, J. F. (2007). Chaperone-mediated autophagy. Autophagy, 3(4), 295–299. https://doi.org/10.4161/auto.4144

    Article  CAS  PubMed  Google Scholar 

  23. Dillon, R. L., Marcotte, R., Hennessy, B. T., Woodgett, J. R., Mills, G. B., & Muller, W. J. (2009). Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Research, 69(12), 5057–5064. https://doi.org/10.1158/0008-5472.CAN-08-4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Djavaheri-Mergny, M., Maiuri, M. C., & Kroemer, G. (2010). Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene, 29(12), 1717–1719. https://doi.org/10.1038/onc.2009.519

    Article  CAS  PubMed  Google Scholar 

  25. Duan, W., Chen, K., Jiang, Z., Chen, X., Sun, L., Li, J., Lei, J., Xu, Q., Ma, J., Li, X., Han, L., Wang, Z., Wu, Z., Wang, F., Wu, E., Ma, Q., & Ma, Z. (2017). Desmoplasia suppression by metformin-mediated AMPK activation inhibits pancreatic cancer progression. Cancer Letters, 385, 225–233. https://doi.org/10.1016/j.canlet.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  26. Dunn, C. J., & Peters, D. H. (1995). Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs, 49(5), 721–749. https://doi.org/10.2165/00003495-199549050-00007

    Article  CAS  PubMed  Google Scholar 

  27. Durand, P. M., & Ramsey, G. (2019). The nature of programmed cell death. Biological Theory, 14(1), 30–41. https://doi.org/10.1007/s13752-018-0311-0

    Article  Google Scholar 

  28. Fan, T. J., Han, L. H., Cong, R. S., & Liang, J. (2005). Caspase family proteases and apoptosis. Acta Biochimica et Biophysica Sinica (Shanghai), 37(11), 719–727. https://doi.org/10.1111/j.1745-7270.2005.00108.x

    Article  CAS  Google Scholar 

  29. Fang, C., Gu, L., Smerin, D., Mao, S., & Xiong, X. (2017). The interrelation between reactive oxygen species and autophagy in neurological disorders. Oxidative Medicine and Cellular Longevity, 2017, 8495160. https://doi.org/10.1155/2017/8495160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fato, R., Bergamini, C., Bortolus, M., Maniero, A. L., Leoni, S., Ohnishi, T., & Lenaz, G. (2009). Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochimica et Biophysica Acta, 1787(5), 384–392. https://doi.org/10.1016/j.bbabio.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  31. Gong, Y., Wang, C., Jiang, Y., Zhang, S., Feng, S., Fu, Y., & Luo, Y. (2020). Metformin inhibits tumor metastasis through suppressing Hsp90α secretion in an AMPKα1-PKCγ dependent manner. Cells, 9(1), 144. https://doi.org/10.3390/cells9010144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 12(12), 931–947. https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  33. Grabinski, N., Bartkowiak, K., Grupp, K., Brandt, B., Pantel, K., & Jücker, M. (2011). Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cellular Signalling, 23(12), 1952–1960. https://doi.org/10.1016/j.cellsig.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  34. Green, D. R., & Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature, 458(7242), 1127–1130. https://doi.org/10.1038/nature07986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hardie, D. G., Schaffer, B. E., & Brunet, A. (2016). AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends in Cell Biology, 26(3), 190–201. https://doi.org/10.1016/j.tcb.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  36. Hasan, A., Haque, E., Hameed, R., Maier, P. N., Irfan, S., Kamil, M., Nazir, A., & Mir, S. S. (2020). Hsp90 inhibitor gedunin causes apoptosis in A549 lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and downregulating autophagy. Life sciences, 256, 118000. https://doi.org/10.1016/j.lfs.2020.118000

    Article  CAS  PubMed  Google Scholar 

  37. He, G., Zhang, Y. W., Lee, J. H., Zeng, S. X., Wang, Y. V., Luo, Z., Dong, X. C., Viollet, B., Wahl, G. M., & Lu, H. (2014). AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Molecular and Cellular Biology, 34(2), 148–157. https://doi.org/10.1128/MCB.00670-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hunziker, A., Jensen, M. H., & Krishna, S. (2010). Stress-specific response of the p53-Mdm2 feedback loop. BMC Systems Biology, 4, 94. https://doi.org/10.1186/1752-0509-4-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jafari, A., Rezaei-Tavirani, M., Farhadihosseinabadi, B., Taranejoo, S., & Zali, H. (2020). HSP90 and co-chaperones: Impact on tumor progression and prospects for molecular-targeted cancer therapy. Cancer Investigation, 38(5), 310–328. https://doi.org/10.1080/07357907.2020.1752227

    Article  CAS  PubMed  Google Scholar 

  40. Jhaveri, T. Z., Woo, J., Shang, X., Park, B. H., & Gabrielson, E. (2015). AMP-activated kinase (AMPK) regulates activity of HER2 and EGFR in breast cancer. Oncotarget, 6(17), 14754–14765. https://doi.org/10.18632/oncotarget.4474

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ji, L. L., & Mitchell, E. W. (1994). Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochemical Pharmacology, 47(5), 877–885. https://doi.org/10.1016/0006-2952(94)90488-x

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, B. H., & Liu, L. Z. (2009). PI3K/PTEN signaling in angiogenesis and tumorigenesis. Advances in Cancer Research, 102, 19–65. https://doi.org/10.1016/S0065-230X(09)02002-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jin, J., Xiong, Y., & Cen, B. (2017). Bcl-2 and Bcl-xL mediate resistance to receptor tyrosine kinase-targeted therapy in lung and gastric cancer. Anti-Cancer Drugs, 28(10), 1141–1149. https://doi.org/10.1097/CAD.0000000000000561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jones, R. G., Plas, D. R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M. J., & Thompson, C. B. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular Cell, 18(3), 283–293. https://doi.org/10.1016/j.molcel.2005.03.027

    Article  CAS  PubMed  Google Scholar 

  45. Ju, T. C., Chen, H. M., Lin, J. T., Chang, C. P., Chang, W. C., Kang, J. J., Sun, C. P., Tao, M. H., Tu, P. H., Chang, C., Dickson, D. W., & Chern, Y. (2011). Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington’s disease. The Journal of Cell Biology, 194(2), 209–227. https://doi.org/10.1083/jcb.201105010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kabir, M. F., Kim, H.-R., Han-Jung Chae, H.-J. (2018) Endoplasmic reticulum stress and autophagy. Endoplasmic Reticulum. IntechOpen. https://dpi.org/10.5772/intechopen.81381

  47. Kamil, M., Haque, E., Irfan, S., Sheikh, S., Hasan, A., Nazir, A., Lohani, M., & Mir, S. S. (2017). ER chaperone GRP78 regulates autophagy by modulation of p53 localization. Frontiers in Bioscience (Elite edition), 9, 54–66. https://doi.org/10.2741/e785

    Article  PubMed  Google Scholar 

  48. Kaniak-Golik, A., & Skoneczna, A. (2015). Mitochondria-nucleus network for genome stability. Free Radical Biology & Medicine, 82, 73–104. https://doi.org/10.1016/j.freeradbiomed.2015.01.013

    Article  CAS  Google Scholar 

  49. Kato, K., Gong, J., Iwama, H., Kitanaka, A., Tani, J., Miyoshi, H., Nomura, K., Mimura, S., Kobayashi, M., Aritomo, Y., Kobara, H., Mori, H., Himoto, T., Okano, K., Suzuki, Y., Murao, K., & Masaki, T. (2012). The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Molecular Cancer Therapeutics, 11(3), 549–560. https://doi.org/10.1158/1535-7163.MCT-11-0594

    Article  CAS  PubMed  Google Scholar 

  50. Kenyon, C. J. (2010). The genetics of ageing. Nature, 464(7288), 504–512. https://doi.org/10.1038/nature08980

    Article  CAS  PubMed  Google Scholar 

  51. Khurana, N., & Bhattacharyya, S. (2015). Hsp90, the concertmaster: Tuning transcription. Frontiers in Oncology, 5, 100. https://doi.org/10.3389/fonc.2015.00100

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kirkegaard, T., Witton, C. J., Edwards, J., Nielsen, K. V., Jensen, L. B., Campbell, F. M., Cooke, T. G., & Bartlett, J. M. (2010). Molecular alterations in AKT1, AKT2 and AKT3 detected in breast and prostatic cancer by FISH. Histopathology, 56(2), 203–211. https://doi.org/10.1111/j.1365-2559.2009.03467.x

    Article  PubMed  Google Scholar 

  53. Klionsky, D. J., & Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science (New York, N.Y.), 290(5497), 1717–1721. https://doi.org/10.1126/science.290.5497.1717

    Article  CAS  PubMed  Google Scholar 

  54. Kodiha, M., Rassi, J. G., Brown, C. M., & Stochaj, U. (2007). Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK–>ERK1/2 pathway. American Journal of Physiology Cell Physiology, 293(5), C1427–C1436. https://doi.org/10.1152/ajpcell.00176.2007

    Article  CAS  PubMed  Google Scholar 

  55. Koga, H., Martinez-Vicente, M., Arias, E., Kaushik, S., Sulzer, D., & Cuervo, A. M. (2011). Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease. The Journal of Neuroscience : The official journal of the Society for Neuroscience, 31(50), 18492–18505. https://doi.org/10.1523/JNEUROSCI.3219-11.2011

    Article  CAS  PubMed  Google Scholar 

  56. Kubbutat, M. H., Jones, S. N., & Vousden, K. H. (1997). Regulation of p53 stability by Mdm2. Nature, 387(6630), 299–303. https://doi.org/10.1038/387299a0

    Article  CAS  PubMed  Google Scholar 

  57. Lee, M. W., Kim, D. S., Lee, J. H., Lee, B. S., Lee, S. H., Jung, H. L., Sung, K. W., Kim, H. T., Yoo, K. H., & Koo, H. H. (2011). Roles of AKT1 and AKT2 in non-small cell lung cancer cell survival, growth, and migration. Cancer Science, 102(10), 1822–1828. https://doi.org/10.1111/j.1349-7006.2011.02025.x

    Article  CAS  PubMed  Google Scholar 

  58. Lev Bar-Or, R., Maya, R., Segel, L. A., Alon, U., Levine, A. J., & Oren, M. (2000). Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11250–11255. https://doi.org/10.1073/pnas.210171597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, J., Ni, M., Lee, B., Barron, E., Hinton, D. R., & Lee, A. S. (2008). The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death and Differentiation, 15(9), 1460–1471. https://doi.org/10.1038/cdd.2008.81

    Article  CAS  PubMed  Google Scholar 

  60. Li, P., Zhou, L., Zhao, T., Liu, X., Zhang, P., Liu, Y., Zheng, X., & Li, Q. (2017). Caspase-9: Structure, mechanisms and clinical application. Oncotarget, 8(14), 23996–24008. https://doi.org/10.18632/oncotarget.15098

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lianos, G. D., Alexiou, G. A., Mangano, A., Mangano, A., Rausei, S., Boni, L., Dionigi, G., & Roukos, D. H. (2015). The role of heat shock proteins in cancer. Cancer Letters, 360(2), 114–118. https://doi.org/10.1016/j.canlet.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  62. Lin, S. C., & Hardie, D. G. (2018). AMPK: Sensing glucose as well as cellular energy status. Cell Metabolism, 27(2), 299–313. https://doi.org/10.1016/j.cmet.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  63. Linnerth-Petrik, N. M., Santry, L. A., Moorehead, R., Jücker, M., Wootton, S. K., & Petrik, J. (2016). Akt isoform specific effects in ovarian cancer progression. Oncotarget, 7(46), 74820–74833. https://doi.org/10.18632/oncotarget.11204

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu, K., Kang, M., Li, J., Qin, W., & Wang, R. (2019). Prognostic value of the mRNA expression of members of the HSP90 family in non-small cell lung cancer. Experimental and Therapeutic Medicine, 17(4), 2657–2665. https://doi.org/10.3892/etm.2019.7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, Z., Ding, Y., Ye, N., Wild, C., Chen, H., & Zhou, J. (2016). Direct activation of Bax protein for cancer therapy. Medicinal Research Reviews, 36(2), 313–341. https://doi.org/10.1002/med.21379

    Article  CAS  PubMed  Google Scholar 

  66. Lu, C. C., Chiang, J. H., Tsai, F. J., Hsu, Y. M., Juan, Y. N., Yang, J. S., & Chiu, H. Y. (2019). Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. International Journal of Oncology, 54(4), 1271–1281. https://doi.org/10.3892/ijo.2019.4704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo, S., & Rubinsztein, D. C. (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: An effect rescued by Bcl-xL. Cell Death and Differentiation, 17(2), 268–277. https://doi.org/10.1038/cdd.2009.121

    Article  CAS  PubMed  Google Scholar 

  68. Luo, Z., Zang, M., & Guo, W. (2010). AMPK as a metabolic tumor suppressor: Control of metabolism and cell growth. Future Oncology (London, England), 6(3), 457–470. https://doi.org/10.2217/fon.09.174

    Article  CAS  PubMed  Google Scholar 

  69. Ma, S. B., Nguyen, T. N., Tan, I., Ninnis, R., Iyer, S., Stroud, D. A., Menard, M., Kluck, R. M., Ryan, M. T., & Dewson, G. (2014). Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: A requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death and Differentiation, 21(12), 1925–1935. https://doi.org/10.1038/cdd.2014.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mariño, G., Niso-Santano, M., Baehrecke, E. H., & Kroemer, G. (2014). Self-consumption: The interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 15(2), 81–94. https://doi.org/10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McComb, S., Chan, P. K., Guinot, A., Hartmannsdottir, H., Jenni, S., Dobay, M. P., Bourquin, J. P., & Bornhauser, B. C. (2019). Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Science Advances, 5(7), eaau9433. https://doi.org/10.1126/sciadv.aau9433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McIlwain, D. R., Berger, T., & Mak, T. W. (2015). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 7(4), a026716. https://doi.org/10.1101/cshperspect.a026716

    Article  PubMed  PubMed Central  Google Scholar 

  73. Menon, M. B., & Dhamija, S. (2018). Beclin 1 Phosphorylation - At the Center of Autophagy Regulation. Frontiers in Cell and Developmental Biology, 6, 137. https://doi.org/10.3389/fcell.2018.00137

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mogavero, A., Maiorana, M. V., Zanutto, S., Varinelli, L., Bozzi, F., Belfiore, A., Volpi, C. C., Gloghini, A., Pierotti, M. A., & Gariboldi, M. (2017). Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Scientific Reports, 7(1), 15992. https://doi.org/10.1038/s41598-017-16149-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moretti, L., Cha, Y. I., Niermann, K. J., & Lu, B. (2007). Switch between apoptosis and autophagy: Radiation-induced endoplasmic reticulum stress? Cell cycle (Georgetown, Tex.), 6(7), 793798. https://doi.org/10.4161/cc.6.7.4036

    Article  Google Scholar 

  76. Mori, M., Hitora, T., Nakamura, O., Yamagami, Y., Horie, R., Nishimura, H., & Yamamoto, T. (2015). Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. International Journal of Oncology, 46(1), 47–54. https://doi.org/10.3892/ijo.2014.2727

    Article  CAS  PubMed  Google Scholar 

  77. Mukhopadhyay, S., Panda, P. K., Sinha, N., Das, D. N., & Bhutia, S. K. (2014). Autophagy and apoptosis: Where do they meet? Apoptosis : An International Journal on Programmed Cell Death, 19(4), 555–566. https://doi.org/10.1007/s10495-014-0967-2

    Article  CAS  PubMed  Google Scholar 

  78. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417(1), 1–13. https://doi.org/10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  79. Nazim, U. M., & Park, S. Y. (2019). Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. International Journal of Molecular Medicine, 43(2), 701–708. https://doi.org/10.3892/ijmm.2018.3994

    Article  CAS  PubMed  Google Scholar 

  80. Nieminen, A. I., Eskelinen, V. M., Haikala, H. M., Tervonen, T. A., Yan, Y., Partanen, J. I., & Klefström, J. (2013). Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 110(20), E1839–E1848. https://doi.org/10.1073/pnas.1208530110

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nogueira, V., Park, Y., Chen, C. C., Xu, P. Z., Chen, M. L., Tonic, I., Unterman, T., & Hay, N. (2008). Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell, 14(6), 458–470. https://doi.org/10.1016/j.ccr.2008.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Otomo, C., Metlagel, Z., Takaesu, G., & Otomo, T. (2013). Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nature Structural & Molecular Biology, 20(1), 59–66. https://doi.org/10.1038/nsmb.2431

    Article  CAS  Google Scholar 

  83. Owen, M. R., Doran, E., & Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal, 348(Pt 3), 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ozaki, T., & Nakagawara, A. (2011). Role of p53 in cell death and human cancers. Cancers, 3(1), 994–1013. https://doi.org/10.3390/cancers3010994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pandey, S. S., Singh, S., Pathak, C., & Tiwari, B. S. (2018). “Programmed cell death: A process of death for survival” - How far terminology pertinent for cell death in unicellular organisms. Journal of Cell Death, 11, 1179066018790259. https://doi.org/10.1177/1179066018790259

    Article  PubMed  PubMed Central  Google Scholar 

  86. Park, H. K., Yoon, N. G., Lee, J. E., Hu, S., Yoon, S., Kim, S. Y., Hong, J. H., Nam, D., Chae, Y. C., Park, J. B., & Kang, B. H. (2020). Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Experimental & Molecular Medicine, 52(1), 79–91. https://doi.org/10.1038/s12276-019-0360-x

    Article  CAS  Google Scholar 

  87. Peng, M., Darko, K. O., Tao, T., Huang, Y., Su, Q., He, C., Yin, T., Liu, Z., & Yang, X. (2017). Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treatment Reviews, 54, 24–33. https://doi.org/10.1016/j.ctrv.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  88. Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., & Fésüs, L. (2007). Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death and Differentiation, 14(6), 1117–1128. https://doi.org/10.1038/sj.cdd.4402112

    Article  CAS  PubMed  Google Scholar 

  89. Pillai, R. N., & Ramalingam, S. S. (2014). Heat shock protein 90 inhibitors in non-small-cell lung cancer. Current Opinion in Oncology, 26(2), 159–164. https://doi.org/10.1097/CCO.0000000000000047

    Article  CAS  PubMed  Google Scholar 

  90. Pizzo, P., & Pozzan, T. (2007). Mitochondria-endoplasmic reticulum choreography: Structure and signaling dynamics. Trends in Cell Biology, 17(10), 511–517. https://doi.org/10.1016/j.tcb.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  91. Polivka, J., Jr., & Janku, F. (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology & Therapeutics, 142(2), 164–175. https://doi.org/10.1016/j.pharmthera.2013.12.004

    Article  CAS  Google Scholar 

  92. Rasmussen, A. K., Chatterjee, A., Rasmussen, L. J., & Singh, K. K. (2003). Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Research, 31(14), 3909–3917. https://doi.org/10.1093/nar/gkg446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rikiishi, H. (2012). Novel Insights into the Interplay between apoptosis and autophagy. International Journal of Cell Biology, 2012, 317645. https://doi.org/10.1155/2012/317645

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rong, B., & Yang, S. (2018). Molecular mechanism and targeted therapy of Hsp90 involved in lung cancer: New discoveries and developments. International Journal of Oncology, 52(2), 321–336. https://doi.org/10.3892/ijo.2017.4214

    Article  CAS  PubMed  Google Scholar 

  95. Sahai, R., Bhattacharjee, A., Shukla, V. N., Yadav, P., Hasanain, M., Sarkar, J., Narender, T., & Mitra, K. (2020). Gedunin isolated from the mangrove plant Xylocarpus granatum exerts its anti-proliferative activity in ovarian cancer cells through G2/M-phase arrest and oxidative stress-mediated intrinsic apoptosis. Apoptosis : An international journal on programmed cell death, 25(7–8), 481–499. https://doi.org/10.1007/s10495-020-01605-5

    Article  CAS  PubMed  Google Scholar 

  96. Saitoh, M., Nagai, K., Nakagawa, K., Yamamura, T., Yamamoto, S., & Nishizaki, T. (2004). Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochemical Pharmacology, 67(10), 2005–2011. https://doi.org/10.1016/j.bcp.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  97. Santucci, R., Sinibaldi, F., Cozza, P., Polticelli, F., & Fiorucci, L. (2019). Cytochrome c: An extreme multifunctional protein with a key role in cell fate. International Journal of Biological Macromolecules, 136, 1237–1246. https://doi.org/10.1016/j.ijbiomac.2019.06.180

    Article  CAS  PubMed  Google Scholar 

  98. Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10832–10837. https://doi.org/10.1073/pnas.170276797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scaltriti, M., & Baselga, J. (2006). The epidermal growth factor receptor pathway: A model for targeted therapy. Clinical Cancer Research : An official journal of the American Association for Cancer Research, 12(18), 5268–5272. https://doi.org/10.1158/1078-0432.CCR-05-1554

    Article  CAS  PubMed  Google Scholar 

  100. Schuler, M., & Green, D. R. (2001). Mechanisms of p53-dependent apoptosis. Biochemical Society Transactions, 29(Pt 6), 684–688. https://doi.org/10.1042/0300-5127:0290684

    Article  CAS  PubMed  Google Scholar 

  101. Shakeel, E., Akhtar, S., Khan, M., Lohani, M., Arif, J. M., & Siddiqui, M. H. (2017). Molecular docking analysis of aplysin analogs targeting survivin protein. Bioinformation, 13(9), 293–300. https://doi.org/10.6026/97320630013293

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shimamura, T., Li, D., Ji, H., Haringsma, H. J., Liniker, E., Borgman, C. L., Lowell, A. M., Minami, Y., McNamara, K., Perera, S. A., Zaghlul, S., Thomas, R. K., Greulich, H., Kobayashi, S., Chirieac, L. R., Padera, R. F., Kubo, S., Takahashi, M., Tenen, D. G., … Shapiro, G. I. (2008). Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Research, 68(14), 5827–5838. https://doi.org/10.1158/0008-5472.CAN-07-5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shintani, T., & Klionsky, D. J. (2004). Autophagy in health and disease: A double-edged sword. Science (New York, N.Y.), 306(5698), 990–995. https://doi.org/10.1126/science.1099993

    Article  CAS  PubMed  Google Scholar 

  104. Song, X., Kim, S. Y., Zhang, L., Tang, D., Bartlett, D. L., Kwon, Y. T., & Lee, Y. J. (2014). Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer. Cell death & disease, 5(10), e1504. https://doi.org/10.1038/cddis.2014.463

    Article  CAS  Google Scholar 

  105. Sreedhar, A. S., & Csermely, P. (2004). Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy: A comprehensive review. Pharmacology & Therapeutics, 101(3), 227–257. https://doi.org/10.1016/j.pharmthera.2003.11.004

    Article  CAS  Google Scholar 

  106. Stahl, J. M., Sharma, A., Cheung, M., Zimmerman, M., Cheng, J. Q., Bosenberg, M. W., Kester, M., Sandirasegarane, L., & Robertson, G. P. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Research, 64(19), 7002–7010. https://doi.org/10.1158/0008-5472.CAN-04-1399

    Article  CAS  PubMed  Google Scholar 

  107. Subramani, R., Gonzalez, E., Nandy, S. B., Arumugam, A., Camacho, F., Medel, J., Alabi, D., & Lakshmanaswamy, R. (2017). Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget, 8(7), 1089–10904. https://doi.org/10.18632/oncotarget.8055

    Article  Google Scholar 

  108. Sun, W., Sanderson, P. E., & Zheng, W. (2016). Drug combination therapy increases successful drug repositioning. Drug Discovery Today, 21(7), 1189–1195. https://doi.org/10.1016/j.drudis.2016.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D’Amelio, M., Criollo, A., Morselli, E., Zhu, C., Harper, F., Nannmark, U., Samara, C., Pinton, P., Vicencio, J. M., Carnuccio, R., Moll, U. M., Madeo, F., Paterlini-Brechot, P., Rizzuto, R., … Kroemer, G. (2008). Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 10(6), 676–687. https://doi.org/10.1038/ncb1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tharmarajah, L., Samarakoon, S. R., Ediriweera, M. K., Piyathilaka, P., Tennekoon, K. H., Senathilake, K. S., Rajagopalan, U., Galhena, P. B., & Thabrew, I. (2017). In vitro anticancer effect of gedunin on human teratocarcinomal (NTERA-2) cancer stem-like cells. BioMed Research International, 2017, 2413197. https://doi.org/10.1155/2017/2413197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Toker, A. (2012). Achieving specificity in Akt signaling in cancer. Advances in Biological Regulation, 52(1), 78–87. https://doi.org/10.1016/j.advenzreg.2011.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Chiao, P. J., Achanta, G., Arlinghaus, R. B., Liu, J., & Huang, P. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell, 10(3), 241–252. https://doi.org/10.1016/j.ccr.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  113. Vandamme, M., Robert, E., Lerondel, S., Sarron, V., Ries, D., Dozias, S., Sobilo, J., Gosset, D., Kieda, C., Legrain, B., Pouvesle, J. M., & Pape, A. L. (2012). ROS implication in a new antitumor strategy based on non-thermal plasma. International Journal of Cancer, 130(9), 2185–2194. https://doi.org/10.1002/ijc.26252

    Article  CAS  PubMed  Google Scholar 

  114. Vilchez, D., Saez, I., & Dillin, A. (2014). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nature Communications, 5, 5659. https://doi.org/10.1038/ncomms6659

    Article  CAS  PubMed  Google Scholar 

  115. Wee, P., & Wang, Z. (2017). Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 9(5), 52. https://doi.org/10.3390/cancers9050052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wen, S., Zhu, D., & Huang, P. (2013). Targeting cancer cell mitochondria as a therapeutic approach. Future Medicinal Chemistry, 5(1), 53–67. https://doi.org/10.4155/fmc.12.190

    Article  CAS  PubMed  Google Scholar 

  117. Whitesell, L., & Lindquist, S. L. (2005). HSP90 and the chaperoning of cancer. Nature Reviews Cancer, 5(10), 761–772. https://doi.org/10.1038/nrc1716

    Article  CAS  PubMed  Google Scholar 

  118. Willimott, S., Merriam, T., & Wagner, S. D. (2011). Apoptosis induces Bcl-XS and cleaved Bcl-XL in chronic lymphocytic leukaemia. Biochemical and Biophysical Research Communications, 405(3), 480–485. https://doi.org/10.1016/j.bbrc.2011.01.057

    Article  CAS  PubMed  Google Scholar 

  119. Wu, G. S., & Ding, Z. (2002). Caspase 9 is required for p53-dependent apoptosis and chemosensitivity in a human ovarian cancer cell line. Oncogene, 21(1), 1–8. https://doi.org/10.1038/sj.onc.1205020

    Article  CAS  PubMed  Google Scholar 

  120. Wu, H., Chen, S., Ammar, A. B., Xu, J., Wu, Q., Pan, K., Zhang, J., & Hong, Y. (2015). Crosstalk between macroautophagy and chaperone-mediated autophagy: Implications for the treatment of neurological diseases. Molecular Neurobiology, 52(3), 1284–1296. https://doi.org/10.1007/s12035-014-8933-0

    Article  CAS  PubMed  Google Scholar 

  121. Xiang, X., Saha, A. K., Wen, R., Ruderman, N. B., & Luo, Z. (2004). AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochemical and Biophysical Research Communications, 321(1), 161–167. https://doi.org/10.1016/j.bbrc.2004.06.133

    Article  CAS  PubMed  Google Scholar 

  122. Xu, C., Liu, J., Hsu, L. C., Luo, Y., Xiang, R., & Chuang, T. H. (2011). Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. FASEB journal: Official publication of the Federation of American Societies for Experimental Biology, 25(8), 2700–2710. https://doi.org/10.1096/fj.10-167676

    Article  CAS  PubMed  Google Scholar 

  123. Yang, H., Lee, M. H., Park, I., Jeon, H., Choi, J., Seo, S., Kim, S. W., Koh, G. Y., Park, K. S., & Lee, D. H. (2017). HSP90 inhibitor (NVP-AUY922) enhances the anti-cancer effect of BCL-2 inhibitor (ABT-737) in small cell lung cancer expressing BCL-2. Cancer Letters, 411, 19–26. https://doi.org/10.1016/j.canlet.2017.09.040

    Article  CAS  PubMed  Google Scholar 

  124. Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., & Simon, H. U. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology, 8(10), 1124–1132. https://doi.org/10.1038/ncb1482

    Article  CAS  PubMed  Google Scholar 

  125. Yu, C., Jiao, Y., Xue, J., Zhang, Q., Yang, H., Xing, L., Chen, G., Wu, J., Zhang, S., Zhu, W., & Cao, J. (2017). Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. International Journal of Biological Sciences, 13(12), 1560–1569. https://doi.org/10.7150/ijbs.18830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, L., Yi, Y., Guo, Q., Sun, Y., Ma, S., Xiao, S., Geng, J., Zheng, Z., & Song, S. (2012). Hsp90 interacts with AMPK and mediates acetyl-CoA carboxylase phosphorylation. Cellular Signalling, 24(4), 859–865. https://doi.org/10.1016/j.cellsig.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  127. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., & Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation, 108(8), 1167–1174. https://doi.org/10.1172/JCI13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, H., Li, X. M., Meinkoth, J., & Pittman, R. N. (2000). Akt regulates cell survival and apoptosis at a postmitochondrial level. The Journal of Cell Biology, 151(3), 483–494. https://doi.org/10.1083/jcb.151.3.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou, J., Yang, J., Fan, X., Hu, S., Zhou, F., Dong, J., Zhang, S., Shang, Y., Jiang, X., Guo, H., Chen, N., Xiao, X., Sheng, J., Wu, K., Nie, Y., & Fan, D. (2016). Chaperone-mediated autophagy regulates proliferation by targeting RND3 in gastric cancer. Autophagy, 12(3), 515–528. https://doi.org/10.1080/15548627.2015.1136770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zong, W. X., & Moll, U. (2008). p53 in autophagy control. Cell Cycle (Georgetown, Tex.), 7(19), 2947. https://doi.org/10.4161/cc.7.19.7008

    Article  CAS  PubMed  Google Scholar 

  131. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., & Sollott, S. J. (2000). Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. The Journal of Experimental Medicine, 192(7), 1001–1014. https://doi.org/10.1084/jem.192.7.1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zou, Z., Tao, T., Li, H., & Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell & Bioscience, 10, 31. https://doi.org/10.1186/s13578-020-00396-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Hon’ble Vice-Chancellor, Integral University, Lucknow, for providing infrastructural support and Dean Office, R&D, Integral University, for providing manuscript communication number (IU/R&D/2021-MCN0001317). The author, A.H., is thankful to SERB-DST for providing the fellowship.

Funding

This work was supported by the Science & Engineering Research Board (SERB-DST) (grant number: YSS/2015/001902, awarded to SSM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AH, SSM; experiment performance: AH; material preparation, data collection, and analysis: AH and SSM; writing—original draft preparation: AH and SSM; writing—review and editing: AH, SSM, NK, ML; funding acquisition: SSM; resources: SSM; supervision: SSM.

Corresponding author

Correspondence to Snober S. Mir.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Yes. All authors agreed to participate in this research.

Consent for Publication

Yes. All authors have approved the last version of the manuscript for its submission.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, A., Khamjan, N., Lohani, M. et al. Targeted Inhibition of Hsp90 in Combination with Metformin Modulates Programmed Cell Death Pathways in A549 Lung Cancer Cells. Appl Biochem Biotechnol 195, 7338–7378 (2023). https://doi.org/10.1007/s12010-023-04424-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04424-x

Keywords

Navigation