Skip to main content

Advertisement

Log in

Nanoencapsulated Aquafeeds and Current Uses in Fisheries/Shrimps: A Review

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Feeds for aquaculture animals are designed to provide them with the greatest amount of nourishment they need to carry out their regular physiological activities, such as maintaining a potent natural immune system and boosting growth and reproduction. However, the problems that severely hamper this sector's ability to contribute to achieving global food security include disease prevalence, chemical pollution, environmental deterioration, and inadequate feed usage. The regulated release of active aquafeed components; limited water solubility, bioaccessibility, and bioavailability, as well as their potent odour and flavour, limit their utilisation. They are unstable under high temperatures, acidic pH, oxygen, or light. Recent advancements in nano-feed for aquaculture (fish/shrimp) have attract enormous attention due to its excellent nutritional value, defeating susceptibility and perishability. Encapsulation is a multifunctional smart system that could bring benefits of personalized medicine; minimize costs and resources in the preclinical and clinical study in pharmacology. It guarantees the coating of the active ingredient as well as its controlled release and targeted distribution to a particular area of the digestive tract. For instance, using nanotechnology to provide more effective fish/shrimps feed for aquaculture species. The review enables a perspective points on safety and awareness in aquafeeds that have been made by the advancements of nanosystem. Therefore, potential of nano-delivery system in aquafeed industry for aquaculture act as concluding remark on future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gabriel, N. N., Habte-Tsion, H. M., & Haulofu, M. (2022). Perspectives of nanotechnology in aquaculture: Fish nutrition, disease, and water treatment. In A. Krishnan, B. Ravindran, B. Balasubramanian, H. C. Swart, S. J. Panchu, & R. Prasad (Eds.), Emerging nanomaterials for advanced technologies (pp. 463–485). Springer International Publishing. https://doi.org/10.1007/978-3-030-80371-1_15

    Chapter  Google Scholar 

  2. Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5), 417–432. https://doi.org/10.1039/b517131h

    Article  CAS  Google Scholar 

  3. Lall, S. P., & Tibbetts, S. M. (2009). Nutrition, feeding, and behavior of fish veterinary clinics of North America. Exotic Animal Practice, 12(2), 361–372. https://doi.org/10.1016/j.cvex.2009.01.005

    Article  PubMed  Google Scholar 

  4. Krishnani, K. K. (2021). Finfish-based bioaugmentation technology for enhancing Shrimp Grower’s income and livelihood. Agricultural Research, 10(3), 361–368. https://doi.org/10.1007/s40003-020-00530-y

    Article  Google Scholar 

  5. Wang, W., Sun, J., Liu, C., & Xue, Z. (2017). Application of immunostimulants in aquaculture: Current knowledge and future perspectives. Aquaculture Research, 48(1), 1–23. https://doi.org/10.1111/are.13161

    Article  Google Scholar 

  6. Mourya, V. K., Inamdar, N., Nawale, R. B., & Kulthe, S. S. (2011). Polymeric micelles: General considerations and their applications. Indian J Pharm Educ Res, 45(2), 128–138.

    Google Scholar 

  7. Jafari, S. M. (2017). An overview of nanoencapsulation techniques and their classification. Nanoencapsulation Technologies for the Food and Nutraceutical Industries, 1–34. https://doi.org/10.1016/B978-0-12-809436-5.00001-X

  8. Kothamasu, P., Kanumur, H., Ravur, N., Maddu, C., Parasuramrajam, R., & Thangavel, S. (2012). Nanocapsules: The weapons for novel drug delivery systems. BioImpacts, BI, 2(2), 71. https://doi.org/10.5681/bi.2012.011

    Article  PubMed  CAS  Google Scholar 

  9. Reza Mozafari, M., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. Journal of liposome research, 18(4), 309–327. https://doi.org/10.1080/08982100802465941

    Article  PubMed  CAS  Google Scholar 

  10. Bedford, M. A., & Schulze, H. (1998). Exogenous enzymes for pigs and poultry. Nutrition Research Reviews, 11(1), 91–114. https://doi.org/10.1079/NRR19980007

    Article  PubMed  CAS  Google Scholar 

  11. Soni, M., Maurya, A., Das, S., Prasad, J., Yadav, A., Singh, V. K., & Dwivedy, A. K. (2022). Nanoencapsulation strategies for improving nutritional functionality, safety and delivery of plant-based foods: Recent updates and future opportunities. Plant Nano Biology, 1, 100004. https://doi.org/10.1016/j.plana.2022.100004

    Article  Google Scholar 

  12. da Cunha, J. A., de Ávila Scheeren, C., Fausto, V. P., de Melo, L. D. W., Henneman, B., Frizzo, C. P., & Baldisserotto, B. (2018). The antibacterial and physiological effects of pure and nanoencapsulated Origanummajorana essential oil on Fish infected with Aeromonashydrophila. Microbial pathogenesis, 124, 116–121. https://doi.org/10.1016/j.micpath.2018.08.040

    Article  PubMed  CAS  Google Scholar 

  13. Udo, I. U., Etukudo, U., & Anwana, U. I. U. (2018). Effects of chitosan and chitosan nanoparticles on water quality, growth performance, survival rate and meat quality of the African catfish, Clariasgariepinus. Nanoscience, 1(1), 12–25.https://doi.org/10.31058/j.nano.2018.11002

  14. Navarro-Segura, L., Ros-Chumillas, M., López-Cánovas, A. E., García-Ayala, A., & López-Gómez, A. (2019). Nanoencapsulated essential oils embedded in ice improve the quality and shelf life of fresh whole seabream stored on ice. Heliyon, 5(6), e01804. https://doi.org/10.1016/j.heliyon.2019.e01804

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tom, A. P., Jayakumar, J. S., Biju, M., Somarajan, J., & Ibrahim, M. A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4, 100022. https://doi.org/10.1016/j.nexus.2021.100022

    Article  CAS  Google Scholar 

  16. Hedayati, S. A., Sheikh Veisi, R., Hosseini Shekarabi, S. P., ShahbaziNaserabad, S., Bagheri, D., & Ghafarifarsani, H. (2022). Effect of dietary Lactobacillus casei on physiometabolic responses and liver histopathology in common carp (Cyprinus carpio) after exposure to iron oxide nanoparticles. Biological trace element research, 200(7), 3346–3354. https://doi.org/10.1007/s12011-021-02906-9

    Article  PubMed  CAS  Google Scholar 

  17. Rajeshkumar, S., Venkatesan, C., Sarathi, M., Sarathbabu, V., Thomas, J., Basha, K. A., & Hameed, A. S. (2009). Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish & Shellfish Immunology, 26(3), 429–437. https://doi.org/10.1016/j.fsi.2009.01.003

    Article  CAS  Google Scholar 

  18. Strømme, M., Brohede, U., Atluri, R., & Garcia-Bennett, A. E. (2009). Mesoporous silica-based nanomaterials for drug delivery: Evaluation of structural properties associated with release rate. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(1), 140–148. https://doi.org/10.1002/wnan.13

    Article  PubMed  Google Scholar 

  19. Eldridge, J. H., Hammond, C. J., Meulbroek, J. A., Staas, J. K., Gilley, R. M., & Tice, T. R. (1990). Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. Journal of Controlled Release, 11(1–3), 205–214. https://doi.org/10.1016/0168-3659(90)90133-E

    Article  CAS  Google Scholar 

  20. Thiruvengadam, M., Rajakumar, G., & Chung, I. M. (2018). Nanotechnology: current uses and future applications in the food industry. 3 Biotech, 8(1), 1–13. https://doi.org/10.1007/s13205-018-1104-7

    Article  Google Scholar 

  21. Ashouri, S., Keyvanshokooh, S., Salati, A. P., Johari, S. A., & Pasha-Zanoosi, H. (2015). Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture, 446, 25–29. https://doi.org/10.1016/j.aquaculture.2015.04.021

    Article  CAS  Google Scholar 

  22. Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., ..., & Fernandes, T. F. (2010). Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment408(7), 1745–1754. https://doi.org/10.1016/j.scitotenv.2009.10.035

  23. Bochtis, D. D., Sørensen, C. G., & Busato, P. (2014). Advances in agricultural machinery management: A review. Biosystems Engineering, 126, 69–81. https://doi.org/10.1016/j.biosystemseng.2014.07.012

    Article  Google Scholar 

  24. Dong, H., Wang, P., Yang, Z., Li, R., Xu, X., & Shen, J. (2022). Dual improvement in curcumin encapsulation efficiency and lyophilized complex dispersibility through ultrasound regulation of curcumin–protein assembly. Ultrasonics Sonochemistry, 90, 106188. https://doi.org/10.1016/j.ultsonch.2022.106188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Albdour, S. A., Haddad, Z., Sharaf, O. Z., Alazzam, A., & Abu-Nada, E. (2022). Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage: Fundamentals, recent advances, and future directions. Progress in Energy and Combustion Science, 93, 101037. https://doi.org/10.1016/j.pecs.2022.101037

    Article  Google Scholar 

  26. Livney, Y. D. (2015). Nanostructured delivery systems in food: Latest developments and potential future directions. Current Opinion in Food Science, 3, 125–135. https://doi.org/10.1016/j.cofs.2015.06.010

    Article  Google Scholar 

  27. Khezerlou, A., & Jafari, S. M. (2020). Nanoencapsulated bioactive components for active food packaging. In Handbook of food nanotechnology (pp. 493–532). Academic Press. https://doi.org/10.1016/B978-0-12-815866-1.00013-3

  28. Bryant, S. J., Christofferson, A. J., Greaves, T. L., McConville, C. F., Bryant, G., & Elbourne, A. (2022). Bulk and interfacial nanostructure and properties in deep eutectic solvents: Current perspectives and future directions. Journal of Colloid and Interface Science, 608, 2430–2454. https://doi.org/10.1016/j.jcis.2021.10.163

    Article  PubMed  CAS  Google Scholar 

  29. Narasimhan, N. L., Bharath, R., Ramji, S. A., Tarun, M., & Arumugam, A. S. (2014). Numerical studies on the performance enhancement of an encapsulated thermal storage unit. International journal of thermal sciences, 84, 184–195. https://doi.org/10.1016/j.ijthermalsci.2014.05.003

    Article  Google Scholar 

  30. Ravichandran, R. (2010). Nanotechnology applications in food and food processing: Innovative green approaches, opportunities and uncertainties for global market. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P72–P96. https://doi.org/10.1080/19430871003684440

    Article  Google Scholar 

  31. Murata, J. I., Ohya, Y., & Ouchi, T. (1997). Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool. Carbohydrate Polymers, 32(2), 105–109. https://doi.org/10.1016/S0144-8617(96)00154-3

    Article  CAS  Google Scholar 

  32. Choi, M. J., Ruktanonchai, U., Min, S. G., Chun, J. Y., & Soottitantawat, A. (2010). Physical characteristics of fish oil encapsulated by β-cyclodextrin using an aggregation method or polycaprolactone using an emulsion–diffusion method. Food chemistry, 119(4), 1694–1703. https://doi.org/10.1016/j.foodchem.2009.09.052

    Article  CAS  Google Scholar 

  33. Sanches-Fernandes, G. M., Sá-Correia, I., & Costa, R. (2022). Vibriosis outbreaks in aquaculture: Addressing environmental and public health concerns and preventive therapies using gilthead seabream farming as a model system. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.904815

  34. Rousta, L. K., Bodbodak, S., Nejatian, M., Yazdi, A. P. G., Rafiee, Z., Xiao, J., & Jafari, S. M. (2021). Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends in Food Science & Technology, 118, 688–710. https://doi.org/10.1016/j.tifs.2021.10.029

    Article  CAS  Google Scholar 

  35. Kumar, S. R., Ahmed, V. I., Parameswaran, V., Sudhakaran, R., Babu, V. S., & Hameed, A. S. (2008). Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish & Shellfish Immunology, 25(1–2), 47–56. https://doi.org/10.1016/j.fsi.2007.12.004

    Article  CAS  Google Scholar 

  36. Adomako, M., St-Hilaire, S., Zheng, Y., Eley, J., Marcum, R. D., Sealey, W., & Sheridan, P. P. (2012). Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly (D, L-Lactic-Co-Glycolic Acid)] nanoparticles. Journal of Fish Diseases, 35(3), 203–214. https://doi.org/10.1111/j.1365-2761.2011.01338.x

    Article  PubMed  CAS  Google Scholar 

  37. Tian, J., & Yu, J. (2011). Poly (lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthysolivaceus) against lymphocystis disease virus. Fish & Shellfish Immunology, 30(1), 109–117. https://doi.org/10.1016/j.fsi.2010.09.016

    Article  CAS  Google Scholar 

  38. Rezaei, A., Fathi, M., & Jafari, S. M. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 88, 146–162. https://doi.org/10.1016/j.foodhyd.2018.10.003

    Article  CAS  Google Scholar 

  39. Hamad, A. F., Han, J. H., Kim, B. C., & Rather, I. A. (2018). The intertwine of nanotechnology with the food industry. Saudi Journal of Biological Sciences, 25(1), 27–30. https://doi.org/10.1016/j.sjbs.2017.09.004

    Article  PubMed  CAS  Google Scholar 

  40. Maqsoudlou, A., Assadpour, E., Mohebodini, H., & Jafari, S. M. (2020). Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science, 278, 102122. https://doi.org/10.1016/j.cis.2020.102122

    Article  PubMed  CAS  Google Scholar 

  41. Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013–1021. https://doi.org/10.1016/j.foodchem.2012.09.010

    Article  PubMed  CAS  Google Scholar 

  42. Hassani, M., & Hasani, S. (2018). Nano-encapsulation of thyme essential oil in chitosan-Arabic gum system: evaluation of its antioxidant and antimicrobial properties. Trends in Phytochemical Research, 2(2), 75–82. https://doi.org/20.1001.1.25883623.2018.2.2.2.2

  43. Bratovcic, A., & Suljagic, J. (2019). Micro-and nano-encapsulation in food industry. Croatian journal of Food Science and Technology, 11(1), 113–121. https://doi.org/10.17508/Cjfst.2019.11.1.17

    Article  Google Scholar 

  44. Onwulata, C. I. (2013). Microencapsulation and functional bioactive foods. Journal of Food Processing and Preservation, 37(5), 510–532. https://doi.org/10.1111/j.1745-4549.2012.00680.x

    Article  CAS  Google Scholar 

  45. Wang, T., Xue, J., Hu, Q., Zhou, M., & Luo, Y. (2017). Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. Journal of colloid and interface science, 507, 119–130. https://doi.org/10.1016/j.jcis.2017.07.090

    Article  PubMed  CAS  Google Scholar 

  46. McClements, D. J. (2015). Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science, 219, 27–53. https://doi.org/10.1016/j.cis.2015.02.002

    Article  PubMed  CAS  Google Scholar 

  47. Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & del Carmen Villarán, M. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1–2), 185–189. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022

    Article  PubMed  CAS  Google Scholar 

  48. Mohsenabadi, N., Rajaei, A., Tabatabaei, M., & Mohsenifar, A. (2018). Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules, 112, 148–155. https://doi.org/10.1016/j.ijbiomac.2018.01.034

    Article  PubMed  CAS  Google Scholar 

  49. Arroyo-Maya, I. J., & McClements, D. J. (2015). Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International, 69, 1–8. https://doi.org/10.1016/j.foodres.2014.12.005

    Article  CAS  Google Scholar 

  50. Trucillo, P., Campardelli, R., Aliakbarian, B., Perego, P., & Reverchon, E. (2018). Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. The Journal of Supercritical Fluids, 135, 152–159. https://doi.org/10.1016/j.supflu.2018.01.018

    Article  CAS  Google Scholar 

  51. Huang, Q., Yu, H., & Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Science, 75(1), R50–R57. https://doi.org/10.1111/j.1750-3841.2009.01457.x

    Article  PubMed  CAS  Google Scholar 

  52. Pérez-Masiá, R., López-Nicolás, R., Periago, M. J., Ros, G., Lagaron, J. M., & López-Rubio, A. (2015). Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry, 168, 124–133. https://doi.org/10.1016/j.foodchem.2014.07.051

    Article  PubMed  CAS  Google Scholar 

  53. Dasgupta, N., Ranjan, S., Mundra, S., Ramalingam, C., & Kumar, A. (2016). Fabrication of food grade vitamin-E nanoemulsion by low energy approach, characterization and its application. International Journal of Food Properties, 19(3), 700–708. https://doi.org/10.1080/10942912.2015.1042587

    Article  CAS  Google Scholar 

  54. Rehman, A., Ahmad, T., Aadil, R. M., Spotti, M. J., Bakry, A. M., Khan, I. M., & Tong, Q. (2019). Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology, 90, 35–46. https://doi.org/10.1016/j.tifs.2019.05.015

    Article  CAS  Google Scholar 

  55. Faiz, H., Zuberi, A., Nazir, S., Rauf, M., & Younus, N. (2015). Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology, 17(3), 568–574. https://doi.org/10.17957/IJAB/17.3.14.446

    Article  CAS  Google Scholar 

  56. Raeisi, S., Ojagh, S. M., Quek, S. Y., Pourashouri, P., & Salaün, F. (2019). Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT, 116, 108494. https://doi.org/10.1016/j.lwt.2019.108494

    Article  CAS  Google Scholar 

  57. Ricaurte, L., Correa, R. E. P., de Jesus Perea-Flores, M., & Quintanilla-Carvajal, M. X. (2017). Influence of milk whey on high-oleic palm oil nanoemulsions: Powder production, physical and release properties. Food Biophysics, 12(4), 439–450. https://doi.org/10.1007/s11483-017-9500-9

    Article  Google Scholar 

  58. Bhushani, J. A., Kurrey, N. K., & Anandharamakrishnan, C. (2017). Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. Journal of Food Engineering, 199, 82–92. https://doi.org/10.1016/j.jfoodeng.2016.12.010

    Article  CAS  Google Scholar 

  59. Pushpalatha, R., Selvamuthukumar, S., & Kilimozhi, D. (2018). Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-Physicochemical characterization, drug release, stability and cytotoxicity. Journal of Drug Delivery Science and Technology, 45, 45–53. https://doi.org/10.1016/j.jddst.2018.03.004

    Article  CAS  Google Scholar 

  60. Qian, K., Wu, J., Zhang, E., Zhang, Y., & Fu, A. (2015). Biodegradable double nanocapsule as a novel multifunctional carrier for drug delivery and cell imaging. International Journal of Nanomedicine, 10, 4149. https://doi.org/10.2147/IJN.S83731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Khosravi-Katuli, K., Prato, E., Lofrano, G., Guida, M., Vale, G., & Libralato, G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 24(21), 17326–17346. https://doi.org/10.1007/s11356-017-9360-3

    Article  PubMed  Google Scholar 

  62. Lall, S. P., & Dumas, A. (2022). Nutritional requirements of cultured fish: Formulating nutritionally adequate feeds. In D. A. Davis (Ed.), Feed and feeding practices in aquaculture, 2nd edn. (pp. 65–132). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821598-2.00005-9

  63. Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science & Technology, 22(11), 585–594. https://doi.org/10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  64. Can, E., Kizak, V., Kayim, M., Can, S. S., Kutlu, B., Ates, M., & Demirtas, N. (2011). Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on environment. Journal of Materials Science and Engineering, 5, 605–609.

    Google Scholar 

  65. Peng, D., Zhang, J., Liu, Q., & Taylor, E. W. (2007). Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. Journal of inorganic biochemistry, 101(10), 1457–1463. https://doi.org/10.1016/j.jinorgbio.2007.06.021

    Article  PubMed  CAS  Google Scholar 

  66. Sarkar, B., Mahanty, A., Gupta, S. K., Choudhury, A. R., Daware, A., & Bhattacharjee, S. (2022). Nanotechnology: A next-generation tool for sustainable aquaculture. Aquaculture, 546, 737330. https://doi.org/10.1016/j.aquaculture.2021.737330

    Article  CAS  Google Scholar 

  67. Abdel-Warith, A. W. A., El-Bab, A. F. F., Younis, E. S. M., Al-Asgah, N. A., Allam, H. Y., Abd-Elghany, M. F., & Shamlol, F. S. (2020). Using of chitosan nanoparticles (CsNPs), Spirulina as a feed additives under intensive culture system for black tiger shrimp (Penaeus monodon). Journal of King Saud University-Science, 32(8), 3359–3363. https://doi.org/10.1016/j.jksus.2020.09.022

    Article  Google Scholar 

  68. Sáez, M. I., Vizcaíno, A. J., Alarcón, F. J., & Martínez, T. F. (2018). Feed pellets containing chitosan nanoparticles as plasmid DNA oral delivery system for Fish: In vivo assessment in gilthead sea bream (Sparus aurata) juveniles. Fish & Shellfish Immunology, 80, 458–466. https://doi.org/10.1016/j.fsi.2018.05.055

    Article  CAS  Google Scholar 

  69. Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K. K., & Minhas, P. S. (2015). Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Research Letters, 10, 371. https://doi.org/10.1186/s11671-015-1073-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bakhshayesh, S., Seifdavati, J., Seifzadeh, S., Mirzaei Aghjeh Gheshlagh, F., Abdi Benmar, H., & Vahedi, V. (2018). The effect of in Ovo Injection of Nanoparticles of Zinc Oxide on Hatching, Growth Performance and Carcass Yield of Broiler Chicks. Research On Animal Production (Scientific and Research)9(21), 86–92. https://doi.org/10.29252/rap.9.21.86

  71. Vimal, S., Taju, G., Nambi, K. N., Majeed, S. A., Babu, V. S., Ravi, M., & Hameed, A. S. (2012). Synthesis and characterization of CS/TPP nanoparticles for oral delivery of gene in Fish. Aquaculture, 358, 14–22. https://doi.org/10.1016/j.aquaculture.2012.06.012

    Article  CAS  Google Scholar 

  72. Bhoopathy, S., Inbakandan, D., Rajendran, T., Chandrasekaran, K., Reddy, B. A., Kasilingam, R., & Dharani, G. (2021). Dietary supplementation of curcumin-loaded chitosan nanoparticles stimulates immune response in the white leg shrimp Litopenaeus vannamei challenged with Vibrio harveyi. Fish & Shellfish Immunology, 117, 188–191. https://doi.org/10.1016/j.fsi.2021.08.002

    Article  CAS  Google Scholar 

  73. Bhoopathy, S., Inbakandan, D., Rajendran, T., Chandrasekaran, K., Kasilingam, R., &Gopal, D. (2021). Curcumin loaded chitosan nanoparticles fortify shrimp feed pellets with enhanced antioxidant activity. Materials Science and Engineering: C, 120, 111737. https://doi.org/10.1016/j.msec.2020.111737.

  74. Saravanadevi, K., Devi, N. R., Dorothy, R., Joany, R. M., Rajendran, S., & Nguyen, T. A. (2022). Nanotechnology for agriculture: an introduction. In Nanosensors for Smart Agriculture (pp. 3–23). Elsevier. https://doi.org/10.1016/B978-0-12-824554-5.00013-6.

  75. Tello-Olea, M., Rosales-Mendoza, S., Campa-Córdova, A. I., Palestino, G., Luna-González, A., Reyes-Becerril, M., & Angulo, C. (2019). Gold nanoparticles (AuNP) exert immunostimulatory and protective effects in shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish & shellfish immunology, 84, 756–767. https://doi.org/10.1016/j.fsi.2018.10.056

    Article  CAS  Google Scholar 

  76. Bunglavan, S. J., Garg, A. K., Dass, R. S., & Shrivastava, S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livest Res Int, 2(3), 36–47.

    Google Scholar 

  77. Shah, B. R., & Mraz, J. (2020). Advances in nanotechnology for sustainable aquaculture and fisheries. Reviews in Aquaculture, 12(2), 925–942. https://doi.org/10.1111/raq.12356

    Article  Google Scholar 

  78. Krishnani, K. K., Boddu, V. M., Chadha, N. K., Chakraborty, P., Kumar, J., Krishna, G., & Pathak, H. (2022). Nanostructured materials from plant, animal, and fisheries wastes: Potential and valorization for application. Agriculture, 1–36. https://doi.org/10.21203/rs.3.rs-1844329/v1

  79. Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193–198. https://doi.org/10.1016/j.foodchem.2009.10.006

    Article  CAS  Google Scholar 

  80. Najafi, Z., Cetinkaya, T., Bildik, F., Altay, F., & Yeşilçubuk, N. Ş. (2022). Nanoencapsulation of saffron (Crocus sativus L.) extract in zein nanofibers and their application for the preservation of sea bass fillets. LWT, 163, 113588. https://doi.org/10.1016/j.lwt.2022.113588

    Article  CAS  Google Scholar 

  81. Rao, M. A. (2009). Nanoscale particles in food and food packaging. Journal of Food Science, 74(9). https://doi.org/10.1111/j.1750-3841.2009.01420.x.

  82. Das, M., Saxena, N., & Dwivedi, P. D. (2009). Emerging trends of nanoparticles application in food technology: Safety paradigms. Nanotoxicology, 3(1), 10–18. https://doi.org/10.1080/17435390802504237

    Article  CAS  Google Scholar 

  83. Martirosyan, A., & Schneider, Y. J. (2014). Engineered nanomaterials in food: Implications for food safety and consumer health. International Journal of Environmental Research and Public Health, 11(6), 5720–5750. https://doi.org/10.3390/ijerph110605720

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82–89. https://doi.org/10.1016/j.tibtech.2008.10.010

    Article  PubMed  CAS  Google Scholar 

  85. Kang, S., Pinault, M., Pfefferle, L. D., & Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 23(17), 8670–8673. https://doi.org/10.1021/la701067r

    Article  PubMed  CAS  Google Scholar 

  86. Chau, C. F., Wu, S. H., & Yen, G. C. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18(5), 269–280. https://doi.org/10.1016/j.tifs.2007.01.007

    Article  CAS  Google Scholar 

  87. Perez, R., & Gaonkar, A. G. (2014). Commercial applications of microencapsulation and controlled delivery in food and beverage products. in microencapsulation in the food industry (pp. 543–549). Academic Press. https://doi.org/10.1016/B978-0-12-404568-2.00041-8.

  88. Ross, S. A., Srinivas, P. R., Clifford, A. J., Lee, S. C., Philbert, M. A., & Hettich, R. L. (2004). New technologies for nutrition research. The Journal of Nutrition, 134(3), 681–685. https://doi.org/10.1093/jn/134.3.681

    Article  PubMed  CAS  Google Scholar 

  89. Shrivastava, S., & Dash, D. (2009). Agrifood nanotechnology: a tiny revolution in food and agriculture. Journal of Nano Research, 6, 1–14. https://doi.org/10.4028/www.scientific.net/JNanoR.6.1

    Article  CAS  Google Scholar 

  90. Augustin, M. A., & Sanguansri, P. (2009). Nanostructured materials in the food industry. Advances in Food and Nutrition Research, 58, 183–213. https://doi.org/10.1016/S1043-4526(09)58005-9

    Article  PubMed  CAS  Google Scholar 

  91. Farhang, B. (2009). Nanotechnology and applications in food safety. In Global issues in food science and technology (pp. 401–410). Academic Press. https://doi.org/10.1016/B978-0-12-374124-0.00022-3

  92. Wang, D., Wang, K., Zhao, L., Liu, X., & Hu, Z. (2023). Fabrication and application of pickering emulsion stabilized by high pressure homogenization modified longan shell nanofiber. Journal of Food Engineering, 339, 111264. https://doi.org/10.1016/j.jfoodeng.2022.111264

    Article  CAS  Google Scholar 

  93. Li, X., Lenhart, J. J., & Walker, H. W. (2012). Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir, 28(2), 1095–1104. https://doi.org/10.1021/la202328n

    Article  PubMed  CAS  Google Scholar 

  94. Xiu, Z. M., Ma, J., & Alvarez, P. J. (2011). Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmental Science & Technology, 45(20), 9003–9008. https://doi.org/10.1021/es201918f

    Article  CAS  Google Scholar 

  95. Wang, H., Burgess, R. M., Cantwell, M. G., Portis, L. M., Perron, M. M., Wu, F., & Ho, K. T. (2014). Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: Role of salinity and dissolved organic carbon. Environmental Toxicology and Chemistry, 33(5), 1023–1029. https://doi.org/10.1002/etc.2529

    Article  PubMed  CAS  Google Scholar 

  96. SalariJoo, H., Kalbassi, M. R., & Johari, S. A. (2012). Effect of water salinity on acute toxicity of colloidal silver nanoparticles in rainbow trout (Oncorhynchus mykiss) larvae. Iranian Journal of Health and Environment, 5(2), 121–131.

    Google Scholar 

  97. Magesky, A., & Pelletier, É. (2018). Cytotoxicity and physiological effects of silver nanoparticles on marine invertebrates. In Q. Saquib, M. Faisal, A. Al-Khedhairy, & A. Alatar (Eds.), Cellular and molecular toxicology of nanoparticles. Advances in experimental medicine and biology, 1048. Springer. https://doi.org/10.1007/978-3-319-72041-8_17

  98. Kruszewski, M., Brzoska, K., Brunborg, G., Asare, N., Dobrzyńska, M., Dušinská, M., & Refsnes, M. (2011). Toxicity of silver nanomaterials in higher eukaryotes. Advances in Molecular Toxicology, 5, 179–218. https://doi.org/10.1016/B978-0-444-53864-2.00005-0

    Article  CAS  Google Scholar 

  99. Luis, A. I., Campos, E. V., Oliveira, J. L., Vallim, J. H., Proença, P. L., Castanha, R. F., & Fraceto, L. F. (2021). Ecotoxicity evaluation of polymeric nanoparticles loaded with ascorbic acid for fish nutrition in aquaculture. Journal of Nanobiotechnology, 19(1), 1–22. https://doi.org/10.1186/s12951-021-00910-8

    Article  CAS  Google Scholar 

  100. Mishra, P., Kumar, R. S. S., Jerobin, J., Thomas, J., Mukherjee, A., & Chandrasekaran, N. (2014). Study on antimicrobial potential of neem oil nanoemulsion against P seudomonas aeruginosa infection in L abeo rohita. Biotechnology and Applied Biochemistry, 61(5), 611–619. https://doi.org/10.1002/bab.1213

    Article  PubMed  CAS  Google Scholar 

  101. Valentim, D. S. S., Duarte, J. L., Oliveira, A. E. M. F. M., Cruz, R. A. S., Carvalho, J. C. T., Solans, C., & Tavares-Dias, M. (2018). Effects of a nanoemulsion with Copaifera officinalis oleoresin against monogenean parasites of Colossoma macropomum: A Neotropical Serrasalmidae. Journal of fish Diseases, 41(7), 1041–1048. https://doi.org/10.1111/jfd.12793

    Article  PubMed  CAS  Google Scholar 

  102. Swathy, J. S., Mishra, P., Thomas, J., Mukherjee, A., & Chandrasekaran, N. (2018). Antimicrobial potency of high-energy emulsified black pepper oil nanoemulsion against aquaculture pathogen. Aquaculture, 491(210), 220. https://doi.org/10.1016/j.aquaculture.2018.03.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thanks to B. S. Abdur Rahman Crescent Institute of Science and Technology to be gratefully acknowledged for facilitating this study.

Funding

This research was supported by the Indian Council of Medical Research [Project ID: 2020–4964].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Ramalingam.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J., Vasagam, K. & Ramalingam, K. Nanoencapsulated Aquafeeds and Current Uses in Fisheries/Shrimps: A Review. Appl Biochem Biotechnol 195, 7110–7131 (2023). https://doi.org/10.1007/s12010-023-04418-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04418-9

Keywords

Navigation