Skip to main content
Log in

Influence of Milk Whey on High-Oleic Palm Oil Nanoemulsions: Powder Production, Physical and Release Properties

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The milk whey is a by-product of the dairy industry with a relevant protein concentration which can be employed as a wall material in spray drying processes. In this work, milk whey was used to encapsulate high oleic palm oil (HOPO) nanoemulsions. The HOPO/whey ratio and the atomization system (two-fluid nozzle and rotary disc) had a significant influence in the capsule formation. In addition, the release of the oleic acid (AO) from HOPO was evaluated by dialysis bag method for powders obtained by both types of atomizers. Different powders were obtained with good physical properties (particle diameter: 6.1–18.8 μm, aw: 0.058–0.125, moisture: 0.86–2.39%, bulk density: 390–770 kg/m3, dissolution rate: 55–115s) from stable nanoemulsions with high encapsulation efficiencies (77 to 99%). On the other hand, the release percents of AO were 82.8 and 75.8% for the two-fluid nozzle and the rotary disc, respectively. The release was not completed in the tested time (7 h) due to stable HOPO-whey linkages, and the gradient that must be broken was higher. Aditionally, an inverse relation was found between diameter particle and AO release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Lopes, P. Martins-lopes, Food Technol. Biotechnol. 51, 2 (2013)

    Google Scholar 

  2. A. Sosnik, K.P. Seremeta, Adv. Colloid Interface Sci. 223 (2015)

  3. L. Shen, C.-H. Tang, Food Res. Int. 48, 1 (2012)

    Article  CAS  Google Scholar 

  4. L. Bai, D.J. McClements, J. Colloid Interface Sci 466 (2016)

  5. L. Ricaurte, M.d.J. Perea-Flores, A. Martinez, M.X. Quintanilla-Carvajal, Innov. Food Sci. Emerg. Technol 35 (2016)

  6. Y. Sun, Z. Xia, J. Zheng, P. Qiu, L. Zhang, D.J. McClements, H. Xiao, J. Funct, Foods 13 (2015)

  7. M.X. Quintanilla-Carvajal, H. Hernández-sánchez, L. Alamilla-beltrán, G. Zepeda-vallejo, M.E. Jaramillo-flores, M.D.J. Perea-flores, A. Jimenez-aparicio, G.F. Gutiérrez-lópez, Food Res. Int 63 (2014)

  8. P.G. Maher, Y.H. Roos, M.A. Fenelon, J. Food Eng. 126 (2014)

  9. P.G. Maher, M.A.E. Auty, Y.H. Roos, L.M. Zychowski, M.A. Fenelon, Food Struct 3 (2015)

  10. R. Liang, Q. Huang, J. Ma, C.F. Shoemaker, F. Zhong, Food Hydrocoll. 33, 2 (2013)

    Google Scholar 

  11. M. Munoz-Ibanez, C. Azagoh, B.N. Dubey, E. Dumoulin, C. Turchiuli, J. Food Eng 167 (2015)

  12. C. Anandharamakrishnan, P. Ishwarya, Spray Drying Techniques for Food Ingredient Encapsulation (Wiley, Chicago, 2015), pp. 77–101

    Book  Google Scholar 

  13. B. Das, S. Sarkar, A. Sarkar, S. Bhattacharjee, C. Bhattacharjee, Process Saf. Environ. Prot 101 (2015)

  14. M. Nishanthi, T. Vasiljevic, J. Chandrapala, Int. Dairy J 66 (2017)

  15. A. Sarkar, J. Arfsten, P.-A. Golay, S. Acquistapace, E. Heinrich, Food Hydrocoll 52 (2016)

  16. Z.E. Sikorski, Chemical and Functional Properties of Food Components, 3rd edn. (CRC Press, 2006), pp. 346–347

  17. L. Munévar, Rev. Palmas 31 (2010)

  18. P. Maher, Y. Roos, K. Kilcawley, M. Auty, M. Fenelon, LWT - Food Sci. Technol 63, 2 (2015)

    Article  Google Scholar 

  19. B. Bazaria, P. Kumar, Food Biosci 14 (2016)

  20. G.M. Kelly, J.A. O’Mahony, A.L. Kelly, D.J. O’Callaghan, J. Food Eng 122, 1 (2014)

    Article  Google Scholar 

  21. R.F. Ribeiro, M.H. Motta, A.P.G. Härter, F.C. Flores, R.C.R. Beck, S.R. Schaffazick, C. de Bona da Silva, Mater. Sci. Eng. C 59 (2016)

  22. P. Insel, D. Ross, K. McMahon, Nutrition, 5th edn. (Jones & Bartlett Learning, Burlington, 2013), pp. 197–205

    Google Scholar 

  23. M.L. Bruschi, Mathematical models of drug release. Strategies to Modify the Drug Release from Pharmaceutical Systems (Woodhead Publishing, 2015), pp. 63–86

  24. D.-G. Kim, Y.-I. Jeong, C. Choi, S.-H. Roh, S.-K. Kang, M.-K. Jang, J.-W. Nah, Int. J. Pharm. 319, 1–2 (2006)

    Article  Google Scholar 

  25. C. Qian, E.A. Decker, H. Xiao, D.J. McClements, Food Chem. 132, 3 (2012)

    Article  Google Scholar 

  26. M. Sessa, M.L. Balestrieri, G. Ferrari, L. Servillo, D. Castaldo, N. D’Onofrio, F. Donsì, R. Tsao, Food Chem 147 (2014)

  27. I. Decagon Devices, (AquaLab, 2016). http://www.aqualab.com/education/aqualab-series-4te-manual/. Accessed 23 March 2016

  28. A. Çağlar, İ.T. Toğrul, H. Toğrul, Food Bioprod. Process. 87, 4 (2009)

    Google Scholar 

  29. A. El-Tinay, I. Ismail, Acta Aliment. Hung 14 (1985)

  30. S. Subtil, G. Rocha-Selmi, M. Thomazini, M. Trindade, F. Netto, C. Favaro-Trindade, J. Food Sci. Technol. 51, 9 (2014)

    Article  Google Scholar 

  31. H.M. Hernández-Hernández, J.J. Chanona-Pérez, G. Calderón-Domínguez, M.J. Perea-Flores, J.a. Mendoza-Pérez, A. Vega, P. Ligero, E. Palacios-González, R.R. Farrera-Rebollo, Microsc. Microanal 20, 5 (2014)

    Google Scholar 

  32. I.-J. Jeong, K.-J. Kim, Eur. J. Oper. Res. 195, 2 (2009)

    Article  Google Scholar 

  33. A. Rohman, S. Riyanto, A.M. Sasi, F.M. Yusof, Food Biosci 7 (2014)

  34. R. Sarrate, J. R. Ticó, M. Miñarro, C. Carrillo, A. Fabregas, E. García-Montoya, P. Pérez-Lozano, and J. M. Suñe-Negre, Powder Technol. 270, Part A (2015)

  35. S. Arslan, M. Erbas, I. Tontul, A. Topuz, LWT - Food Sci. Technol 63, 1 (2015)

    Article  Google Scholar 

  36. L. Salvia-Trujillo, A. Rojas-Graü, R. Soliva-Fortuny, O. Martín-Belloso, Food Hydrocoll 43 (2015)

  37. M. Kazemimostaghim, R. Rajkhowa, X. Wang, Powder Technol 283 (2015)

  38. M. Ahmed, M.S. Youssef, Chem. Eng. Sci. 107 (2014)

  39. D. Wang, X. Ling, H. Peng, Appl. Therm. Eng. 63, 1 (2014)

    Article  Google Scholar 

  40. Y. Wang, W. Liu, X.D. Chen, C. Selomulya, J. Food Eng 175 (2016)

  41. D.M. Parikh, Handbook of Pharmaceutical Granulation Technology, 3rd edn. (CRC Press, 2016), p. 102

  42. G. Caliskan, S.N. Dirim, Powder Technol 287 (2016)

  43. S.Y. Quek, N.K. Chok, P. Swedlund, Chem. Eng. Process. Process Intensif. 46, 5 (2007)

    Google Scholar 

  44. M.A. Haque, J. Chen, P. Aldred, B. Adhikari, Food Chem 177 (2015)

  45. M.Z. Islam, Y. Kitamura, Y. Yamano, M. Kitamura, J. Food Eng 169 (2016)

  46. Y.D. Livney, Curr. Opin. Colloid Interface Sci. 15, 1–2 (2010)

    Article  Google Scholar 

  47. H. Chen, C. Khemtong, X. Yang, X. Chang, J. Gao, Drug Discov. Today 16, 7–8 (2011)

    Google Scholar 

  48. T. Heimbach, D. Fleisher, A. Kaddoumi, Prodrugs: Challenges and Rewards Part 1 (Springer, New York, 2007), pp. 157–215

    Book  Google Scholar 

  49. M. Dissanayake, T. Vasiljevic, J. Dairy Sci. 92, 4 (2009)

    Article  Google Scholar 

  50. M.K. Keogh, B.T. O’Kennedy, Int. Dairy J. 9, 9 (1999)

    Article  Google Scholar 

  51. H.M. Azeredo, K.W. Waldron, Trends Food Sci. Technol 52 (2016)

  52. L. Malafronte, L. Ahrné, V. Robertiello, F. Innings, A. Rasmuson, J. Food Eng 175 (2016)

  53. T. Mahendran, Trop. Agric. Res. Ext. 13 (2010)

  54. K. Szulc, J. Nazarko, E. Ostrowska-Ligęza, A. Lenart, LWT - Food Sci. Technol 68 (2016)

  55. S. Kimura, S. Uchida, K. Kanada, N. Namiki, Int. J. Pharm. 484, 1–2 (2015)

    Article  Google Scholar 

  56. T. Mizumoto, T. Tamura, H. Kawai, A. Kajiyama, S. Itai, Chem. Pharm. Bull. 56, 4 (2008)

    Google Scholar 

  57. H. Bunjes, B. Siekmann, Microencapsulation: Methods and Industrial Applications, 2nd edn. (CRC Press, 2005), pp. 213–269

  58. R. D. O’Brien, Fats and Oils: Formulating and Processing for Applications, 3rd edn. (CRC Press, 2008), pp. 213–228

  59. S. Hao, B. Wang, Y. Wang, Mater. Sci. Eng. C. 49 (2015)

  60. B.N. Estevinho, I. Carlan, A. Blaga, F. Rocha, Powder Technol 289 (2016)

  61. S. Benita, Microencapsulation: Methods and Industrial Applications, 2nd edn. (CRC Press, 2005), p. 154

Download references

Acknowledgements

This work was supported by the Research Department of the University of La Sabana [grant numbers ING 156-2015]. The authors would like to thank to Cenipalma- Colombia, for kindly supplying the High Oleic Palm Oil used in this study and to Alexandra Mondragón Serna, Leader of the project of Health and Nutrition of Cenipalma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Ximena Quintanilla-Carvajal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricaurte, L., Correa, R.E.P., de Jesus Perea-Flores, M. et al. Influence of Milk Whey on High-Oleic Palm Oil Nanoemulsions: Powder Production, Physical and Release Properties. Food Biophysics 12, 439–450 (2017). https://doi.org/10.1007/s11483-017-9500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9500-9

Keywords

Navigation