Skip to main content
Log in

Computational Modelling, Functional Characterization and Molecular Docking to Lead Compounds of Bordetella pertussis Diaminopimelate Epimerase

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bordetella pertussis, the causative agent of whooping cough, is an opportunistic virulent bacterial pathogen that is resistant to a wide range of antibiotics due to a variety of resistance mechanisms. Looking at the increasing number of infections caused by B. pertussis and its resistance to diverse antibiotics, it is essential to develop alternative strategies to fight against B. pertussis. Diaminopimelate epimerase (DapF) is an important enzyme of the lysine biosynthesis pathway in B. pertussis that catalyzes the formation of meso-2, 6-diaminoheptanedioate (meso-DAP), which is an important step in lysine metabolism. Therefore, Bordetella pertussis diaminopimelate epimerase (DapF) becomes an ideal target for antimicrobial drug development. In the present study, computational modelling, functional characterization, binding studies, and docking studies of BpDapF with lead compounds were carried out using different in silico tools. In silico prediction results in the secondary structure, 3-D structure analysis, and protein-protein interaction analysis of BpDapF. Docking studies further showed the respective amino acid residues for ligands in the phosphate‑binding loop of BpDapF play a vital role in the formation of H‑bonds with these ligands. The site where the ligand was bound is a deep groove, which is regarded as the binding cavity of the protein. Biochemical studies indicated that Limonin (binding energy − 8.8 kcal/mol), Ajmalicine (binding energy − 8.7 kcal/mol), Clinafloxacin (binding energy − 8.3 kcal/mol), Dexamethasone (binding energy − 8.2 kcal/mol), and Tetracycline (binding energy − 8.1 kcal/mol) exhibited promising binding towards the drug target DapF of B. pertussis in comparison with the binding between other drugs and act as the potential inhibitors of BpDapF that eventually can reduce the catalytic activity of BpDapF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Hor, L., Dobson, R. C. J., Downton, M. T., Wagner, J., Hutton, C. A., & Perugini, M. A. (2013). Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. Journal of Biological Chemistry, 288, 9238–9248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hutton, C., Southwood, T., & Turner, J. (2003). Inhibitors of lysine biosynthesis as antibacterial agents. Mini-Reviews in Medicinal Chemistry, 3, 115–127.

    Article  PubMed  CAS  Google Scholar 

  3. Hutton, C. A., Perugini, M. A., & Gerrard, J. A. (2007). Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Molecular Biosystems, 3, 458–465.

    Article  PubMed  CAS  Google Scholar 

  4. Lloyd, A. J., Huyton, T., Turkenburg, J., & Roper, D. I. (2004). Refinement of Haemophilus influenzae diaminopimelic acid epimerase (DapF) at 1.75 Å resolution suggests a mechanism for stereocontrol during catalysis. Acta Crystallographica. Section D, Biological Crystallography, 60, 397–400.

    Article  PubMed  Google Scholar 

  5. Sagong, H. Y., & Kim, K. J. (2017). Structural basis for redox sensitivity in Corynebacterium glutamicum diaminopimelate epimerase: an enzyme involved in llysine biosynthesis. Scientific Reports, 7, 42318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Usha, V., Dover, L. G., Roper, D. I., Fütterer, K., & Besra. (2009). Structure of the diaminopimelate epimerase DapF from Mycobacterium tuberculosis. Acta Crystallographica. Section D, Biological Crystallography, 65, 383–387.

    Article  PubMed  CAS  Google Scholar 

  7. Pillai, B., Moorthie, V. A., van Belkum, M. J., et al. (2009). Crystal structure of Diaminopimelate Epimerase from Arabidopsis thaliana, an amino acid racemase critical for l-lysine biosynthesis. Journal of Molecular Biology, 385, 580–594.

    Article  PubMed  CAS  Google Scholar 

  8. Cirilli, M., Zheng, R., Scapin, G., & Blanchard, J. S. (1998). Structural symmetry: the three-dimensional structure of Haemophilus influenzae diaminopimelate epimerase. Biochemistry, 37, 16452–16458.

    Article  PubMed  CAS  Google Scholar 

  9. Pillai, B., Cherney, M. M., Diaper, C. M. (2006). Structural insights into stereochemical inversion by diaminopimelate epimerase: an antibacterial drug target. Proceedings of the National Academy of Sciences of the United States of America, 103, 8668–8673.

  10. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). In J. M. Walker (Ed.), The Proteomics Protocols Handbook, Identification and analysis tools on the ExPASy server (pp. 571–607). Humana Press.

  11. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., et al. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7, 1511–1522.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

  13. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Schrödinger, L., & DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol

  15. Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37, D355–D359. Retrieved from: https://doi.org/10.1093/nar/gkn860

  16. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Science, 2, 1511–1519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.

  18. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three- dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., & Kuhn, M. (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43, D447–D452.

    Article  PubMed  CAS  Google Scholar 

  20. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Drews, O., Reil, G., Parlar, H., & Gorg, A. (2004). Setting up standards and a reference map for the alkaline proteome of the gram-positive bacterium Lactococcus lactis Proteomics, 4, 1293–1304.

    Article  PubMed  CAS  Google Scholar 

  22. Singh, H., Das, S., Gupta, P. P., Batra, S., Prakash, R., Srivastava, V. K., Jyoti, A., Gupta, V., Kothari, S. L., & Kaushik, S. (2020). Binding of metronidazole to Enterococcus faecalis homoserine kinase: binding studies, docking studies, and molecular dynamics simulation studies. Pharmacognosy Magazine, 16(5), 553.

    Google Scholar 

  23. Gerhart, F., Higgins, W., Tardif, C., & Ducep, J. B. (1990). 2-(4-Amino-4-carboxybutyl) aziridine-2-carboxylic acid-A potent irreversible inhibitor of diaminopimelic acid epimerase. Spontaneous formation from α-(Halomethy 1) diaminopimelic acids. Journal of Medicinal Chemistry, 33, 2157–2162.

    Article  PubMed  CAS  Google Scholar 

  24. Kushwaha, S. K., & Shakya, M. (2010). Protein interaction network analysis—approach for potential drug target identification in Mycobacterium tuberculosis. Journal of Theoretical Biology, 262, 284–294.

    Article  PubMed  CAS  Google Scholar 

  25. Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Holland, T. A., Keseler, I. M., Kothari, A., Kubo, A., & Krummenacker, M. (2014). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome databases. Nucleic Acids Research, 42, D459–D471.

    Article  PubMed  CAS  Google Scholar 

  26. Usha, V., Lloyd, A. J., Lovering, A. L., & Besra, G. S. (2012). Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiology Letters, 330, 10–16.

    Article  PubMed  CAS  Google Scholar 

  27. Baumann, R. J., Bohme, E. H., Wiseman, J. S., Vaal, M., & Nichols, J. S. (1988). Inhibition of Escherichia coli growth and diaminopimelic acid epimerase by 3-chlorodiaminopimelic acid. Antimicrobial Agents and Chemotherapy, 32, 1119–1123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vijayashree, P. J. (2019). In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens. Journal of Periodontology, 90, 1441–1448.

    Article  Google Scholar 

  29. Zimmermann, P., & Curtis, N. (2017). Antimicrobial effects of antipyretics. Antimicrobial Agents and Chemotherapy, 61, 02268–02216.

    Article  Google Scholar 

  30. Abdul-Hussein, Z. R. (2014). Acetaminophen as antibacterial agent and its effect on antibiotic susceptibilities of some pathogenic bacteria. European Journal of Experimental Biology, 4, 351–356.

    CAS  Google Scholar 

  31. Neher, A., Arnitz, R., Gstöttner, M., Schä, D., Kröss, E. M., & Nagl, M. (2008). Antimicrobial activity of dexamethasone and its combination with N-chlorotaurine. Archives of Otolaryngology - Head and Neck Surgery, 134, 615–620.

    Article  PubMed  Google Scholar 

  32. Skariyachan, S., Manjunath, M., & Bachappanavar, N. (2019). Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii–insights from molecular docking, molecular dynamic simulations and in vitro assays. Journal of Biomolecular Structure & Dynamics, 37, 1146–1169.

    Article  CAS  Google Scholar 

  33. Singh, H., Das, S., Yadav, J., Srivastava, V. K., Jyoti, A., & Kaushik, S. (2021). In silico prediction, molecular docking and binding studies of acetaminophen and dexamethasone to Enterococcus faecalis diaminopimelate epimerase. Journal of Molecular Recognition, 34, e2894.

  34. Fuchs, T. M., Schneider, B., Krumbach, K., Eggeling, L., & Gross, R. (2000). Characterization of a Bordetella pertussis diaminopimelate (DAP) biosynthesis locus identifies dapC, a novel gene coding for an N-succinyl-L, L-DAP aminotransferase. Journal of Bacteriology, 182, 3626–3631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P., India.

Author information

Authors and Affiliations

Authors

Contributions

Shilpy Singh - Conception or design of the work, Data analysis, interpretation, prepared figures and wrote and reviewed the main manuscript text.

Afsana Praveen - Conception or design of the work, wrote and reviewed the main manuscript text.

Suruchi M. Khanna - Data analysis, interpretation, prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Suruchi M. Khanna.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Praveen, A. & Khanna, S.M. Computational Modelling, Functional Characterization and Molecular Docking to Lead Compounds of Bordetella pertussis Diaminopimelate Epimerase. Appl Biochem Biotechnol 195, 6675–6693 (2023). https://doi.org/10.1007/s12010-023-04413-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04413-0

Keywords

Navigation