Skip to main content
Log in

Molecular Docking and Molecular Dynamics Studies to Identify Potential OXA-10 Extended Spectrum β-Lactamase Non-hydrolysing Inhibitors for Pseudomonas aeruginosa

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic bacterium that frequently causes nosocomial infections. New generation cephalosporins and β-lactams along with inhibitors are used for the treatment of opportunistic bacterial infections. The indiscriminate use of antibiotics has led to the emergence of bacterial resistance. Carbapenem class of antibiotics like imipenem and meropenem are currently the final line of antibiotics for the treatment of infections caused by multidrug-resistant P. aeruginosa. Recent reports indicate that P. aeruginosa has acquired resistance to imipenem through a class D oxacillinase—OXA-10 extended spectrum β-lactamase (ESBL). OXA-10 ESBL is encoded by the gene blaOXA-10. There is an urgent need to develop OXA-10 ESBL non-hydrolysing inhibitors. We have attempted to locate OXA-10 ESBL inhibitors by performing molecular docking and molecular dynamics studies on OXA-10 ESBL with imipenem analogues from ZINC database as well as employing imipenem to understand the mechanism of resistance at the structural level. Our in-silico analysis of imipenem analogues reveals that ZINC44672480 has ideal characteristics for a potent OXA-10 ESBL non-hydrolysing inhibitor. We believe that the results from our study will provide valuable insights into the mechanism of drug resistance and aid in designing potent inhibitors against OXA-10 ESBL producing P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ESBL:

Extended spectrum β-lactamase

OXA:

Oxacillinase

PDB:

Protein data bank

C-score:

Consensus score

MD:

Molecular dynamics

PASS:

Prediction of activity spectra for substances

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

Rg:

Radius of gyration

References

  1. Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22, 582–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang, C. I., Kim, S. H., Kim, H. B., Park, S. W., Choe, Y. J., Oh, M. D., et al. (2003). Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical Infectious Diseases, 37, 745–751.

    Article  PubMed  Google Scholar 

  3. Beck, J., Vercheval, L., Bebrone, C., Herteg-Fernea, A., Lassaux, P., & Marchand-Brynaert, J. (2009). Discovery of novel lipophilic inhibitors of OXA-10 enzyme (class D beta-lactamase) by screening amino analogs and homologs of citrate and isocitrate. Bioorganic & Medicinal Chemistry Letters, 19, 3593–3597.

    Article  CAS  Google Scholar 

  4. Walther-Rasmussen, J., & Hoiby, N. (2006). OXA-type carbapenemases. Journal of Antimicrobial Chemotherapy, 57, 373–383.

    Article  CAS  PubMed  Google Scholar 

  5. Lavanya, P., Ramaiah, S., Singh, H., Bahadur, R., & Anbarasu, A. (2015). Investigations on the role of CH…O interactions and its impact on stability and specificity of penicillin binding proteins. Computers in Biology and Medicine, 65, 85–92.

    Article  CAS  PubMed  Google Scholar 

  6. Lavanya, P., Bag, S., Ramaiah, S., & Anbarasu, A. (2015). Importance of cation-π interactions in the conformational stability and specificity of β-lactamases. Journal of Indian Chemical Society, 92, 1008–1010.

    CAS  Google Scholar 

  7. Lavanya, P., Ramaiah, S., & Anbarasu, A. (2014). Binding site residues in β-lactamases: Role in non-classical interactions and metal binding. Journal of Coordination Chemistry, 67, 2898–2910.

    Article  CAS  Google Scholar 

  8. Lavanya, P., Ramaiah, S., & Anbarasu, A. (2014). Computational analysis of N-H…π interactions and its impact on the structural stability of β-lactamases. Computers in Biology and Medicine, 46, 22–28.

    Article  CAS  PubMed  Google Scholar 

  9. Massova, I., & Mobashery, S. (1998). Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrobial Agents and Chemotherapy, 42, 1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weldhagen, G. F., Poirel, L., & Nordmann, P. (2003). Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrobial Agents and Chemotherapy, 47, 2385–2392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luyt, C. E., Aubry, A., Lu, Q., Micaelo, M., Brechot, N., Brossier, F., et al. (2014). Imipenem, meropenem, or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia. Antimicrobial Agents and Chemotherapy, 58, 1372–1380.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taccone, F. S., Cotton, F., Roisin, S., Vincent, J. L., & Jacobs, F. (2012). Optimal meropenem concentrations to treat multidrug-resistant Pseudomonas aeruginosa septic shock. Antimicrobial Agents and Chemotherapy, 56, 2129–2131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Farshadzadeh, Z., Khosravi, A. D., Alavi, S. M., Parhizgari, N., & Hoveizavi, H. (2014). Spread of extended-spectrum β-lactamase genes of blaOXA-10, blaPER-1 and blaCTX-M in Pseudomonas aeruginosa strains isolated from burn patients. Burns, 40, 1575–1580.

    Article  PubMed  Google Scholar 

  14. Zafer, M. M., Al-Agamy, M. H., El-Mahallawy, H. A., Amin, M. A., & El Din Ashour, S. (2015). Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt. BMC Infectious Diseases, 15, 122.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jones, R. N. (2001). Resistance patterns among nosocomial pathogens: Trends over the past few years. Chest, 119, 397S–404S.

    Article  CAS  PubMed  Google Scholar 

  16. Parimelzaghan, A., Anbarasu, A., & Ramaiah, S. (2016). Gene Network Analysis of metallo beta lactamase family proteins indicates the role of gene partners in antibiotic resistance and reveals important drug targets. Journal of Cellular Biochemistry, 117, 1330–1339.

    Article  CAS  PubMed  Google Scholar 

  17. Lavanya, P., Ramaiah, S., & Anbarasu, A. (2016). A molecular docking and dynamics study to screen potent anti-staphylococcal compounds against ceftaroline resistant MRSA. Journal of Cellular Biochemistry, 117, 542–548.

    Article  CAS  PubMed  Google Scholar 

  18. Anitha, P., Anbarasu, A., & Ramaiah, S. (2016). Gene network analysis reveals the association of important functional partners involved in antibiotic resistance: A report on an important pathogenic bacterium Staphylococcus aureus. Gene, 575, 253–263.

    Article  CAS  PubMed  Google Scholar 

  19. Danel, F., Paetzel, M., Strynadka, N. C., & Page, M. G. (2001). Effect of divalent metal cations on the dimerization of OXA-10 and -14 class D β-lactamases from Pseudomonas aeruginosa. Biochemistry, 40, 9412–9420.

    Article  CAS  PubMed  Google Scholar 

  20. Bush, K., & Jacoby, G. A. (2010). Updated functional classification of beta-lactamases. Antimicrobial Agents and Chemotherapy, 54, 969–976.

    Article  CAS  PubMed  Google Scholar 

  21. Naas, T., & Nordmann, P. (1999). OXA-type beta-lactamases. Current Pharmaceutical Design, 5, 865–879.

    CAS  PubMed  Google Scholar 

  22. Bush, K., Jacoby, G. A., & Medeiros, A. A. (1995). A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 39, 1211–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nordmann, P., & Guibert, M. (1998). Extended-spectrum beta-lactamases in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 42, 128–131.

    Article  CAS  PubMed  Google Scholar 

  24. Mugnier, P., Casin, I., Bouthors, A. T., & Collatz, E. (1998). Novel OXA-10-derived extended-spectrum β-lactamases selected in vivo or in vitro. Antimicrobial Agents and Chemotherapy, 42, 3113–3116.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nass, T., & Nordmann, P. (1999). OXA-type beta-lactamases. Current Pharmaceutical Design, 5, 865–879.

    Google Scholar 

  26. Danel, F., Hall, L. M., Gur, D., & Livermore, D. M. (1998). OXA-16, a further extended spectrum variant of OXA-10 β-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrobial Agents and Chemotherapy, 42, 3117–3122.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Paetzel, M., Danel, F., de Castro, L., Mosimann, S. C., Page, M. G., & Strynadka, N. C. (2000). Crystal structure of the class D beta-lactamase OXA-10. Nature Structural & Molecular Biology, 7, 918–925.

    Article  CAS  Google Scholar 

  28. Vahaboglu, H., Ozturk, R., Akbal, H., Saribas, S., Tansel, O., & Coskunkan, F. (1998). Practical approach for detection and identification of OXA-10-derived ceftazidime-hydrolyzing extended-spectrum β-lactamases. Journal of Clinical Microbiology, 36, 827–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar, K. M., Lavanya, P., Anbarasu, A., & Ramaiah, S. (2014). Molecular dynamics and molecular docking studies on E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant forms of class A β-lactamases. Journal of Biomolecular Structure & Dynamics, 32, 1953–1968.

    Article  CAS  Google Scholar 

  30. Anitha, P., Lavanya, P., Anbarasu, A., & Ramaiah, S. (2014). Molecular docking study of Catechins compounds from Camellia sinensis against UPPS in Staphylococcus aureus. International Journal for Computational Biology, 3, 3–9.

    Google Scholar 

  31. Kumar, K. M., Anitha, P., Sivasakthi, V., Bag, S., Lavanya, P., Anbarasu, A., et al. (2014). In-silico study on Penicillin derivatives and Cephalosporins for Upper Respiratory Tract bacterial pathogens. 3Biotech, 4, 241–251.

    Google Scholar 

  32. Anitha, P., Anbarasu, A., & Ramaiah, S. (2014). Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii. Computers in Biology and Medicine, 48, 17–27.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, K. M., Anbarasu, A., & Ramaiah, S. (2014). Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins. Molecular BioSystems, 10, 891–900.

    Article  CAS  PubMed  Google Scholar 

  34. Anitha, P., Bag, S., Anbarasu, A., & Ramaiah, S. (2015). Gene and protein network analysis of AmpC β lactamase. Cell Biochemistry and Biophysics, 71, 1553–1567.

    Article  CAS  PubMed  Google Scholar 

  35. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Q., Cheng, T., Wang, Y., & Bryant, S. H. (2010). PubChem as a public resource for drug discovery. Drug Discovery Today, 15, 1052–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Irwin, J. J., & Shoichet, B. K. (2005). ZINC–a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45, 177–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jain, A. N. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry, 46, 499–511.

    Article  CAS  PubMed  Google Scholar 

  39. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., et al. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91, 1–41.

    Article  CAS  Google Scholar 

  40. Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer Journal, 6, 163–168.

    Article  Google Scholar 

  41. Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. Journal of Computational Chemistry, 13, 505–524.

    Article  CAS  Google Scholar 

  42. Welch, W., Ruppert, J., & Jain, A. N. (1996). Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chemistry & Biology, 3, 449–462.

    Article  CAS  Google Scholar 

  43. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., & Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 11, 425–445.

    Article  CAS  PubMed  Google Scholar 

  44. Jones, G., Willett, P., & Glen, R. C. (1995). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 245, 43–53.

    Article  CAS  PubMed  Google Scholar 

  45. Muegge, I., & Martin, Y. C. (1999). A general and fast scoring function for protein-ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, 42, 791–804.

    Article  CAS  PubMed  Google Scholar 

  46. Buntrock, R. E. (2002). ChemOffice ultra 7.0. Journal of Chemical Information and Computer Sciences, 42, 1505–1506.

    Article  CAS  PubMed  Google Scholar 

  47. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26.

    Article  CAS  PubMed  Google Scholar 

  48. Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16, 747–748.

    Article  CAS  PubMed  Google Scholar 

  49. Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12, S33.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dash, R., Emran, T. B., Uddin, M. M., Islam, A., & Junaid, M. (2014). Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins. Bioinformation, 10, 562–568.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  PubMed  Google Scholar 

  52. Schuttelkopf, A. W., & van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D, Biological Crystallography, 60, 1355–1363.

    Article  PubMed  Google Scholar 

  53. Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656–1676.

    Article  CAS  PubMed  Google Scholar 

  54. Berendsen, H. J. C., Postama, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullmann (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  55. Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463–1472.

    Article  CAS  Google Scholar 

  56. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  57. Turner, P. J. (2005). XMGRACE, version 5.1.19, Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, ORE, USA.

  58. Sander, T. (2001). OSIRIS property explorer. Allschwil: Actelion Pharmaceuticals Ltd.

    Google Scholar 

  59. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74, 417–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carmeli, Y., Troillet, N., Eliopoulos, G. M., & Samore, M. H. (1999). Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrobial Agents and Chemotherapy, 43, 1379–1382.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Milatovic, D., & Braveny, I. (1987). Development of resistance during antibiotic therapy. European Journal of Clinical Microbiology, 6, 234–244.

    Article  CAS  PubMed  Google Scholar 

  62. Pechere, J. C., & Vladoianu, I. R. (1992). Development of resistance during ceftazidime and cefepime therapy in a murine peritonitis model. Journal of Antimicrobial Chemotherapy, 29, 563–573.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SR gratefully acknowledges the Indian Council of Medical Research (ICMR), Government of India Agency for the research Grant (IRIS ID: 2014-0099). The authors would also like to thank the management of VIT University for providing the necessary facilities to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha Ramaiah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malathi, K., Ramaiah, S. Molecular Docking and Molecular Dynamics Studies to Identify Potential OXA-10 Extended Spectrum β-Lactamase Non-hydrolysing Inhibitors for Pseudomonas aeruginosa . Cell Biochem Biophys 74, 141–155 (2016). https://doi.org/10.1007/s12013-016-0735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0735-8

Keywords

Navigation