Skip to main content
Log in

Vancomycin Loaded Amino-Functionalized MCM-48 Mesoporous Silica Nanoparticles as a Promising Drug Carrier in Bone Substitutes for Bacterial Infection Management

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Orthopedic infections due to biofilm formation in biomaterial-based implants have become challenging in bone tissue engineering. In the present study, in vitro antibacterial analysis of amino-functionalized MCM-48 mesoporous silica nanoparticles (AF-MSNs) loaded with vancomycin is analyzed for its potential as a drug carrier for the sustained/controlled release of vancomycin against Staphylococcus aureus. The effective incorporation of vancomycin into the inner core of AF-MSNs was observed by alternation in the absorption frequencies obtained by Fourier transform infrared spectroscopy (FTIR). Dynamic light scattering (DLS) and high resolution-transmission electron microscopy (HR-TEM) results show that all the AF-MSNs had homogeneous spherical shapes with a mean diameter of 165.2 ± 1.25 nm, and there is a slight change in the hydrodynamic diameter after vancomycin loading. Furthermore, the zeta potential of all the AF-MSNs (+ 30.5 ± 0.54 mV) and AF-MSN/VA (+ 33.3 ± 0.56 mV) were positively charged due to effective functionalization with 3-aminopropyl triethoxysilane (APTES). Furthermore, cytotoxicity results show that the AF-MSNs have better biocompatibility than non-functionalized MSNs (p < 0.05), and results prove AF-MSNs loaded with vancomycin show better antibacterial effect against S. aureus than non-functionalized MSNs. Results confirm that bacterial membrane integrity was affected by treatment with AF-MSNs and AF-MSN/VA by staining the treated cells with FDA/PI. Field emission scanning electron microscopy (FESEM) analysis confirmed the shrinkage of bacterial cells and membrane disintegration. Furthermore, these results demonstrate that amino-functionalized MSNs loaded with vancomycin significantly increased the anti-biofilm and biofilm inhibitory effect and can be incorporated with biomaterial-based bone substitutes and bone cement to prevent orthopedic infections post-implantation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors confirm that the data analyzed and generated from these research findings are provided within this article.

References

  1. Batailler, C., Swan, J., SappeyMarinier, E., Servien, E., & Lustig, S. (2021). New technologies in knee arthroplasty: Current concepts. Journal of Clinical Medicine, 10(1), 1–18. https://doi.org/10.3390/jcm10010047

    Article  Google Scholar 

  2. Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A. M., Benkirane-Jessel, N., … Offner, D. (2018). Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering, 9. https://doi.org/10.1177/2041731418776819

  3. Geurts, J., Chris Arts, J. J., & Walenkamp, G. H. I. M. (2011). Bone graft substitutes in active or suspected infection Contra-indicated or not? Injury, 42(SUPPL 2), S82–S86. https://doi.org/10.1016/j.injury.2011.06.189

    Article  PubMed  Google Scholar 

  4. Otto-Lambertz, C., Yagdiran, A., Wallscheid, F., Eysel, P., & Jung, N. (2017). Periprosthetic infection in joint replacement - Diagnosis and treatment. Deutsches Arzteblatt International, 114(20), 347–354. https://doi.org/10.3238/arztebl.2017.0347

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ribeiro, M., Monteiro, F. J., & Ferraz, M. P. (2012). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2(4), 176–194. https://doi.org/10.4161/biom.22905

    Article  PubMed  PubMed Central  Google Scholar 

  6. Allizond, V., Comini, S., Cuffini, A. M., & Banche, G. (2022). Current knowledge on biomaterials for orthopedic applications modified to reduce bacterial adhesive ability. Antibiotics, 11(4). https://doi.org/10.3390/antibiotics11040529

  7. Krismer, M. (2012). Definition of infection. HIP. International, 22(SUPPL 8), 2–5. https://doi.org/10.5301/HIP.2012.9563

    Article  Google Scholar 

  8. Brescó, M. S., Harris, L. G., Thompson, K., Stanic, B., Morgenstern, M., O’Mahony, L., … Moriarty, T. F. (2017). Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Frontiers in Microbiology, 8(AUG). https://doi.org/10.3389/fmicb.2017.01401

  9. Glage, S., Paret, S., Winkel, A., Stiesch, M., Bleich, A., Krauss, J. K., & Schwabe, K. (2017). A new model for biofilm formation and inflammatory tissue reaction: Intraoperative infection of a cranial implant with Staphylococcus aureus in rats. Acta Neurochirurgica, 159(9), 1747–1756. https://doi.org/10.1007/s00701-017-3244-7

    Article  PubMed  Google Scholar 

  10. Seebach, E., & Kubatzky, K. F. (2019). Chronic implant-related bone infections-Can Immune modulation be a therapeutic strategy? Frontiers in immunology, 10(July), 1724. https://doi.org/10.3389/fimmu.2019.01724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Arduino, J. M., Kaye, K. S., Reed, S. D., Peter, S. A., Sexton, D. J., Chen, L. F., … Anderson, D. J. (2015). Staphylococcus aureus infections following knee and hip prosthesis insertion procedures. Antimicrobial Resistance and Infection Control, 4(1), 1–7. https://doi.org/10.1186/s13756-015-0057-4

  12. Hudson, M. C., Ramp, W. K., & Frankenburg, K. P. (1999). Staphylococcus aureus adhesion to bone matrix and bone-associated biomaterials. FEMS Microbiology Letters, 173(2), 279–284. https://doi.org/10.1016/S0378-1097(99)00079-8

    Article  PubMed  CAS  Google Scholar 

  13. Uribe-García, A., Paniagua-Contreras, G. L., Monroy-Pérez, E., Bustos-Martínez, J., Hamdan-Partida, A., Garzón, J., … Vaca, S. (2021). Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions. Journal of Microbiology, Immunology and Infection, 54(2), 267–275. https://doi.org/10.1016/j.jmii.2019.05.010

  14. Slane, J., Vivanco, J., Rose, W., Ploeg, H. L., & Squire, M. (2015). Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science and Engineering C, 48, 188–196. https://doi.org/10.1016/j.msec.2014.11.068

    Article  PubMed  CAS  Google Scholar 

  15. Sawant, S. N., Selvaraj, V., Prabhawathi, V., & Doble, M. (2013). Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS ONE, 8(5), 1–9. https://doi.org/10.1371/journal.pone.0063311

    Article  CAS  Google Scholar 

  16. Wekwejt, M., Michno, A., Truchan, K., Pałubicka, A., Świeczko-żurek, B., Osyczka, A. M., & Zieliński, A. (2019). Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials, 9(8). https://doi.org/10.3390/nano9081114

  17. Kargozar, S., Montazerian, M., Hamzehlou, S., Kim, H. W., & Baino, F. (2018). Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. Acta Biomaterialia (Vol. 81). https://doi.org/10.1016/j.actbio.2018.09.052

  18. Kühn, K. D., Renz, N., & Trampuz, A. (2017). Lokale Antibiotikatherapie. Der Unfallchirurg, 120(7), 561–572. https://doi.org/10.1007/s00113-017-0372-8

    Article  PubMed  Google Scholar 

  19. Liu, Y., Zeng, Y., Wu, Y., Li, M., Xie, H., & Shen, B. (2021). A comprehensive comparison between cementless and cemented fixation in the total knee arthroplasty: An updated systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 16(1), 1–14. https://doi.org/10.1186/s13018-021-02299-4

    Article  Google Scholar 

  20. Bistolfi, A., Massazza, G., Verné, E., Massè, A., Deledda, D., Ferraris, S., … Crova, M. (2011). Antibiotic-loaded cement in orthopedic surgery: A review. ISRN Orthopedics, 2011, 1–8. https://doi.org/10.5402/2011/290851

  21. Coraça-Huber, D. C., Steixner, S. J. M., Najman, S., Stojanovic, S., Finze, R., Rimashevskiy, D., … Schnettler, R. (2022). Lyophilized human bone allograft as an antibiotic carrier: An in vitro and in vivo study. Antibiotics, 11(7), 1–16. https://doi.org/10.3390/antibiotics11070969

  22. Gisbert-Garzarán, M., Manzano, M., & Vallet-Regí, M. (2020). Mesoporous silica nanoparticles for the treatment of complex bone diseases: Bone cancer, bone infection and osteoporosis. Pharmaceutics, 12(1). https://doi.org/10.3390/pharmaceutics12010083

  23. Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez-Máñez, R. (2019). Mesoporous silica-based materials with bactericidal properties. Small (Weinheim an der Bergstrasse, Germany), 15(24), 1–34. https://doi.org/10.1002/smll.201900669

    Article  CAS  Google Scholar 

  24. Mousavi Elyerdi, S. M., Sarvi, M. N., & O’Connor, A. J. (2019). Synthesis of ultra small nanoparticles (< 50 nm) of mesoporous MCM-48 for bio-adsorption. Journal of Porous Materials, 26(3), 839–846. https://doi.org/10.1007/s10934-018-0650-z

    Article  CAS  Google Scholar 

  25. Ezzati, N., Mahjoub, A. R., AbolhosseiniShahrnoy, A., & Syrgiannis, Z. (2019). Amino Acid-functionalized hollow mesoporous silica nanospheres as efficient biocompatible drug carriers for anticancer applications. International Journal of Pharmaceutics, 572, 118709. https://doi.org/10.1016/j.ijpharm.2019.118709

    Article  PubMed  CAS  Google Scholar 

  26. Gan, Q., Dai, D., Yuan, Y., Qian, J., Sha, S., Shi, J., & Liu, C. (2012). Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery. Biomedical Microdevices, 14(2), 259–270. https://doi.org/10.1007/s10544-011-9604-9

    Article  PubMed  CAS  Google Scholar 

  27. Coelho, P., Oliveira, J., Fernandes, I., Araújo, P., Pereira, A. R., Gameiro, P., & Bessa, L. J. (2021). Pyranoanthocyanins interfering with the quorum sensing of pseudomonas aeruginosa and staphylococcus aureus. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168559

  28. Birtekocak, F., Demirbolat, G. M., & Cevik, O. (2021). TRAIL conjugated silver nanoparticle synthesis, characterization and therapeutic effects on HT-29 colon cancer cells. Iranian Journal of Pharmaceutical Research, 20(2), 45–56. https://doi.org/10.22037/ijpr.2020.112069.13514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nikolić, B., Vasilijević, B., Mitić-Culafić, D., Lesjak, M., Vuković-Gačić, B., Dukić, N. M., & Knežević-Vukčević, J. (2016). Screening of the antibacterial effect of Juniperus sibirica and Juniperus sabina essential oils in a microtitre platebased MIC assay. Botanica Serbica. https://doi.org/10.5281/zenodo.48858

    Article  Google Scholar 

  30. Nie, B., Huo, S., Qu, X., Guo, J., Liu, X., Hong, Q., … Yue, B. (2022). Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioactive Materials, 16(December 2021), 134–148. https://doi.org/10.1016/j.bioactmat.2022.02.003

  31. Burygin, G. L., Khlebtsov, B. N., Shantrokha, A. N., Dykman, L. A., Bogatyrev, V. A., & Khlebtsov, N. G. (2009). On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Research Letters, 4(8), 794–801. https://doi.org/10.1007/s11671-009-9316-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kumari, M., Shukla, S., Pandey, S., Giri, V. P., Bhatia, A., Tripathi, T., … Mishra, A. (2017). Enhanced cellular internalization: A bactericidal mechanism more relative to biogenic nanoparticles than chemical counterparts. ACS Applied Materials and Interfaces, 9(5), 4519–4533. https://doi.org/10.1021/acsami.6b15473

  33. Sana, S., Datta, S., Biswas, D., & Sengupta, D. (2018). Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochimica et Biophysica Acta - Biomembranes, 1860(2), 579–585. https://doi.org/10.1016/j.bbamem.2017.09.027

    Article  PubMed  CAS  Google Scholar 

  34. Mu, H., Tang, J., Liu, Q., Sun, C., Wang, T., & Duan, J. (2016). Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Scientific Reports, 6(2015). https://doi.org/10.1038/srep18877

  35. Kim, T. W., Chung, P. W., & Lin, V. S. Y. (2010). Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chemistry of Materials, 22(17), 5093–5104. https://doi.org/10.1021/cm1017344

    Article  CAS  Google Scholar 

  36. Estevão, B. M., Miletto, I., Hioka, N., Marchese, L., & Gianotti, E. (2021). Mesoporous silica nanoparticles functionalized with amino groups for biomedical applications. ChemistryOpen, 10(12), 1251–1259. https://doi.org/10.1002/open.202100227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zatorska, M., Łazarski, G., Maziarz, U., Wilkosz, N., Honda, T., Yusa, S. ichi, … Kepczynski, M. (2020). Drug-loading capacity of polylactide-based micro- and nanoparticles – Experimental and molecular modeling study. International Journal of Pharmaceutics, 591(October). https://doi.org/10.1016/j.ijpharm.2020.120031

  38. Mai, Z., Chen, J., Hu, Y., Liu, F., Fu, B., Zhang, H., … Zhou, W. (2017). Novel functional mesoporous silica nanoparticles loaded with Vitamin E acetate as smart platforms for pH responsive delivery with high bioactivity. Journal of Colloid and Interface Science, 508, 184–195. https://doi.org/10.1016/j.jcis.2017.07.027

  39. ZakeriSiavashani, A., HaghbinNazarpak, M., Fayyazbakhsh, F., Toliyat, T., McInnes, S. J. P., & Solati-Hashjin, M. (2016). Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures. Journal of Materials Science, 51(24), 10897–10909. https://doi.org/10.1007/s10853-016-0301-1

    Article  CAS  Google Scholar 

  40. He, Y., Luo, L., Liang, S., Long, M., & Xu, H. (2017). Amino-functionalized mesoporous silica nanoparticles as efficient carriers for anticancer drug delivery. Journal of Biomaterials Applications, 32(4), 524–532. https://doi.org/10.1177/0885328217724638

    Article  PubMed  CAS  Google Scholar 

  41. Muriel-Galet, V., Pérez-Esteve, É., Ruiz-Rico, M., Martínez-Máñez, R., Barat, J. M., Hernández-Muñoz, P., & Gavara, R. (2018). Anchoring gated mesoporous silica particles to ethylene vinyl alcohol films for smart packaging applications. Nanomaterials, 8(10). https://doi.org/10.3390/nano8100865

  42. Majoul, N., Aouida, S., & Bessaïs, B. (2015). Progress of porous silicon APTES-functionalization by FTIR investigations. Applied Surface Science, 331, 388–391. https://doi.org/10.1016/j.apsusc.2015.01.107

    Article  CAS  Google Scholar 

  43. Juère, E., Caillard, R., & Kleitz, F. (2020). Pore confinement and surface charge effects in protein-mesoporous silica nanoparticles formulation for oral drug delivery. Microporous and Mesoporous Materials, 306. https://doi.org/10.1016/j.micromeso.2020.110482

  44. Zaharudin, N. S., Mohamed Isa, E. D., Ahmad, H., Abdul Rahman, M. B., & Jumbri, K. (2020). Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. Journal of Saudi Chemical Society, 24(3), 289–302. https://doi.org/10.1016/j.jscs.2020.01.003

    Article  CAS  Google Scholar 

  45. Liu, J. X., Bravo, D., Buza, J., Kirsch, T., Kennedy, O., Rokito, A., … Virk, M. S. (2018). Topical vancomycin and its effect on survival and migration of osteoblasts, fibroblasts, and myoblasts: An in vitro study. Journal of Orthopaedics, 15(1), 53–58. https://doi.org/10.1016/j.jor.2018.01.032

  46. Kaur, A., Preet, S., Kumar, V., Kumar, R., & Kumar, R. (2019). Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176, 62–69. https://doi.org/10.1016/j.colsurfb.2018.12.043

    Article  PubMed  CAS  Google Scholar 

  47. Tawakoli, P. N., Al-Ahmad, A., Hoth-Hannig, W., Hannig, M., & Hannig, C. (2013). Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clinical Oral Investigations, 17(3), 841–850. https://doi.org/10.1007/s00784-012-0792-3

    Article  PubMed  CAS  Google Scholar 

  48. Quinn, C. F., & Hansen, L. D. (2019). Microcalorimetry of biological molecules (Vol. 1964). Retrieved from http://link.springer.com/https://doi.org/10.1007/978-1-4939-9179-2

  49. Vejzovic, D., Piller, P., Cordfunke, R. A., Drijfhout, J. W., Eisenberg, T., Lohner, K., & Malanovic, N. (2022). Where electrostatics matter: Bacterial surface neutralization and membrane disruption by antimicrobial peptides SAAP-148 and OP-145. Biomolecules, 12(9). https://doi.org/10.3390/biom12091252

  50. Michailidis, M., Sorzabal-Bellido, I., Adamidou, E. A., Diaz-Fernandez, Y. A., Aveyard, J., Wengier, R., … Shchukin, D. (2017). Modified mesoporous silica nanoparticles with a dual synergetic antibacterial effect. ACS Applied Materials and Interfaces, 9(44), 38364–38372. https://doi.org/10.1021/acsami.7b14642

  51. Liu, Y., Qin, R., Zaat, S. A. J., Breukink, E., & Heger, M. (2015). Antibacterial photodynamic therapy: Overview of a promising approach to fight antibiotic-resistant bacterial infections. Journal of Clinical and Translational Research, 1(3), 140–167. https://doi.org/10.18053/jctres.201503.002

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yang, C., Xie, H., Li, Q. C., Sun, E. J., & Su, B. L. (2015). Adherence and interaction of cationic quantum dots on bacterial surfaces. Journal of Colloid and Interface Science, 450, 388–395. https://doi.org/10.1016/j.jcis.2015.03.041

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-CLRI, for his support in conducting this research, carrying out experimental work, and publishing this article (CSIR-CLRI communication No. 1774). The authors also acknowledge and thank the support and help rendered by CLRI-CATERS (Centre for Analysis, Testing, Evaluation and Reporting Services) for this research work.

Funding

This work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, by providing fellowship through the award of Senior Research Fellowship (File No. 31/006(0467)/2019-EMR-I) to Mr. Syed Nasar Rahaman, and the authors are grateful to CSIR-CLRI for funding this research through the Major Laboratory Project (MLP-03), and CSIR-Focused Basic Research (FBR) MLP-2006.

Author information

Authors and Affiliations

Authors

Contributions

SNR: contributed to conceptualization, hypothesis, study design, experimentation, material characterization, data interpretation, analysis of the data, and manuscript preparation.

SP: data interpretation and experimental analysis.

AS: performed the material preparation and assisted in vitro studies.

SKAS: contributed to the study design, data interpretation, and final manuscript review.

All authors approved the final manuscript.

Corresponding author

Correspondence to Suresh Kumar Anandasadagopan.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, S.N., Pathmanapan, S., Sidharthan, A. et al. Vancomycin Loaded Amino-Functionalized MCM-48 Mesoporous Silica Nanoparticles as a Promising Drug Carrier in Bone Substitutes for Bacterial Infection Management. Appl Biochem Biotechnol 195, 6607–6632 (2023). https://doi.org/10.1007/s12010-023-04406-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04406-z

Keywords

Navigation