Skip to main content

Advertisement

Log in

Metabolic Phenotype Intricacies on Altered Glucose Metabolism of Breast Cancer Cells upon Glut-1 Inhibition and Mimic Hypoxia In Vitro

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer is the frequently diagnosed cancer and the leading cancer death among women. The growing tumour of the breast is composed of both normoxic and hypoxic cells, and the heterogeneity of tumour affects the targeted treatment strategies against breast cancer. The functional and therapeutic status of the Warburg effect is mostly recognized, and the genes involved in glycolysis have become a target for anticancer therapeutic strategies. Glut-1 is essential for basal glucose uptake among the glucose transporters and could act as a potential target for anticancer therapy. In the present study, we explored the alteration in the metabolic phenotype of SKBR-3 cells, representing HER-2 overexpressed breast cancer cell line, with Glut-1 inhibition by a synthetic small molecule inhibitor WZB117 in the presence or absence of cobalt chloride (CoCl2) induced biochemical hypoxia in vitro. We found that WZB117 and CoCl2 in combination could inhibit metabolic phenotype characteristics such as glucose uptake, cell migration, lactate and ATP production in SKBR-3 cells. Also, Glut-1 inhibition induced apoptosis and cell cycle arrest at the G0–G1 phase even under CoCl2-induced mimic hypoxia. Our findings suggest that Glut-1 inhibition by WZB117 could overcome the protective effect of CoCl2 mimic hypoxia by regulating glycolysis and altering the metabolic phenotype of breast cancer cells. The considering excellent efficacy and minimal toxicity suggest that WZB117 may be a promising anticancer drug to the current therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available on request.

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 7–34.

    PubMed  Google Scholar 

  2. Tan, J., & Le, A. (2021). in The Heterogeneity of Cancer Metabolism (pp. 89–101). Springer.

    Book  Google Scholar 

  3. Park, S., Koo, J. S., Kim, M. S., Park, H. S., Lee, J. S., Lee, J. S., Kim, S. I., & Park, B.-W. (2012). Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. The Breast, 21, 50–57.

    Article  PubMed  Google Scholar 

  4. Lenz, G., Hamilton, A., Geng, S., Hong, T., Kalkum, M., Momand, J., Kane, S. E., & Huss, J. M. (2018). t-Darpp Activates IGF-1R Signaling to Regulate Glucose Metabolism in Trastuzumab-Resistant Breast Cancer Cellst-Darpp, IGF-1R Signaling, and Glucose Metabolism. Clinical Cancer Research, 24, 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  5. Engel, R. H., & Kaklamani, V. G. (2007). HER2-positive breast cancer. Drugs, 67, 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  7. Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of general physiology, 8, 519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in biochemical sciences, 41, 211–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ancey, P. B., Contat, C., & Meylan, E. (2018). Glucose transporters in cancer–from tumor cells to the tumor microenvironment. The FEBS journal, 285, 2926–2943.

    Article  CAS  PubMed  Google Scholar 

  10. Joost, H.-G., Bell, G. I., Best, J. D., Birnbaum, M. J., Charron, M. J., Chen, Y., Doege, H., James, D. E., Lodish, H. F., Moley, K.H.J.A.J.O.P.-E., Metabolism. (2002). Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. American Journal of Physiology-Endocrinology And Metabolism, 282, E974–E976.

    Article  CAS  PubMed  Google Scholar 

  11. Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., Hirano, H. J. B., communications br. (1990). Erythrocyte/HepG2-type glucose transporter is concentrated in cells of blood-tissue barriers. Biochemical and biophysical research communications, 173, 67–73.

    Article  CAS  PubMed  Google Scholar 

  12. Carvalho, K. C., Cunha, I. W., Rocha, R. M., Ayala, F. R., Cajaíba, M. M., Begnami, M. D., Vilela, R. S., Paiva, G. R., Andrade, R. G., & Soares, F. A. (2011). GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics, 66, 965–972.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown, R. S., & Wahl, R. L. (1993). Overexpression of glut-1 glucose transporter in human breast cancer an immunohistochemical study. Cancer, 72, 2979–2985.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, J., Ye, C., Chen, C., Xiong, H., Xie, B., Zhou, J., Chen, Y., Zheng, S., & Wang, L. (2017). Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and meta-analysis. Oncotarget, 8, 16875.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Graham, N. A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., Vivanco, I., Teitell, M. A., Wu, H., Ribas, A., & Lo, R. S. (2012). Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular systems biology, 8, 589.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Suzuki, S., Okada, M., Takeda, H., Kuramoto, K., Sanomachi, T., Togashi, K., Seino, S., Yamamoto, M., Yoshioka, T., & Kitanaka, C. (2018). Involvement of GLUT1-mediated glucose transport and metabolism in gefitinib resistance of non-small-cell lung cancer cells. Oncotarget, 9, 32667.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y., Cao, Y., Zhang, W., Bergmeier, S., Qian, Y., Akbar, H., Colvin, R., Ding, J., Tong, L., & Wu, S. (2012). A Small-Molecule Inhibitor of Glucose Transporter 1 Downregulates Glycolysis, Induces Cell-Cycle Arrest, and Inhibits Cancer Cell Growth In Vitro and In VivoA Glut1 Inhibitor Reduces Cancer Growth In Vitro and In Vivo. Molecular cancer therapeutics, 11, 1672–1682.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, W., Fang, Y., Wang, X.-T., Liu, J., Dan, X., & Sun, L.-L. (2014). Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pacific Journal of Cancer Prevention, 15, 7037–7041.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, F., Ming, J., Zhou, Y., Fan, L. J. C. C., pharmacology. (2016). Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer chemotherapy and pharmacology, 77, 963–972.

    Article  CAS  PubMed  Google Scholar 

  20. Jang, S. M., Han, H., Jang, K.-S., Jun, Y. J., Jang, S.-H., Min, K.-W., Chung, M. S., & Paik, S. S. (2012). The glycolytic phenotype is correlated with aggressiveness and poor prognosis in invasive ductal carcinomas. Journal of Breast Cancer, 15, 172–180.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hussein, Y. R., Bandyopadhyay, S., Semaan, A., Ahmed, Q., Albashiti, B., Jazaerly, T., Nahleh, Z., & Ali-Fehmi, R. (2011). Glut-1 expression correlates with basal-like breast cancer. Translational oncology, 4, 321–327.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Denko, N. C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 8, 705–713.

    Article  CAS  PubMed  Google Scholar 

  23. Axelson, H., Fredlund, E., Ovenberger, M., Landberg, G., & Påhlman, S. (2005). Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Seminars in Cell & Developmental Biology16, 554–563.

  24. Rastogi, S., Banerjee, S., Chellappan, S., & Simon, G. R. (2007). Glut-1 antibodies induce growth arrest and apoptosis in human cancer cell lines. Cancer letters, 257, 244–251.

    Article  CAS  PubMed  Google Scholar 

  25. Okcu, O., Sen, B., Ozturk, C., Guvendi, G. F., & Bedir, R. (2022) GLUT-1 expression in breast cancer. Turkish Journal of Pathology, 38 , 114–121.

  26. Kang, S. S., Chun, Y. K., Hur, M. H., Lee, H. K., Kim, Y. J., Hong, S. R., Lee, J. H., Lee, S. G., & Park, Y. K. (2002). Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Japanese Journal of Cancer Research, 93, 1123–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suteau, V., Bukasa-Kakamba, J., Virjogh-Cenciu, B., Adenis, A., Sabbah, N., & Drak Alsibai, K. (2022). Pathological Significance of GLUT-1 Expression in Breast Cancer Cells in Diabetic and Obese Patients: The French Guiana Study. Cancers, 14, 437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, S. H., Fan, J., Chen, X. M., Cheng, K. J., Wang, S. Q. J. H., Sciences, N. J., & f. t., Head, S. o. t. and Neck. (2009). Inhibition of cell proliferation and glucose uptake in human laryngeal carcinoma cells by antisense oligonucleotides against glucose transporter-1. Head & Neck: Journal for the Sciences and Specialties of the Head and Neck, 31, 1624–1633.

    Article  Google Scholar 

  29. Ojelabi, O. A., Lloyd, K. P., Simon, A. H., De Zutter, J. K., & Carruthers, A. (2016). WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site. Journal of Biological Chemistry, 291, 26762–26772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ždralević, M., Marchiq, I., de Padua, M. M. C., Parks, S. K., & Pouysségur, J. (2017). Metabolic plasiticy in cancers—distinct role of glycolytic enzymes GPI, LDHs or membrane transporters MCTs. Frontiers in oncology, 7, 313.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Farhadi, P., Yarani, R., Valipour, E., Kiani, S., Hoseinkhani, Z., Mansouri, K. J. B., Pharmacotherapy. (2022). Cell line-directed breast cancer research based on glucose metabolism status. Biomedicine & Pharmacotherapy, 146, 112526.

    Article  CAS  Google Scholar 

  32. Peng, Y., Xing, S.-N., Tang, H.-Y., Wang, C.-D., Yi, F.-P., Liu, G.-L., & Wu, X.-M. (2019). Influence of glucose transporter 1 activity inhibition on neuroblastoma in vitro. Gene, 689, 11–17.

    Article  CAS  PubMed  Google Scholar 

  33. Muñoz-Sánchez, J., & Chánez-Cárdenas, M. E. (2019). The use of cobalt chloride as a chemical hypoxia model. Journal of Applied Toxicology, 39, 556–570.

    Article  PubMed  Google Scholar 

  34. Pérez-Tomás, R., & Pérez-Guillén, I. (2020). Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers, 12, 3244.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goetze, K., Walenta, S., Ksiazkiewicz, M., Kunz-Schughart, L. A., & Mueller-Klieser, W. (2011). Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. International journal of oncology, 39, 453–463.

    CAS  PubMed  Google Scholar 

  36. Ganapathy-Kanniappan, S., & Geschwind, J.-F.H. (2013). Tumor glycolysis as a target for cancer therapy: Progress and prospects. Molecular cancer, 12, 1–11.

    Article  Google Scholar 

  37. Jose, C., Bellance, N., & Rossignol, R.J.B.E.B.A.-B. (2011). Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochimica et Biophysica Acta (BBA) -Bioenergetics, 1807, 552–561.

    Article  CAS  PubMed  Google Scholar 

  38. San-Millán, I., Julian, C. G., Matarazzo, C., Martinez, J., & Brooks, G. A. (2020). Is lactate an oncometabolite? Evidence supporting a role for lactate in the regulation of transcriptional activity of cancer-related genes in MCF7 breast cancer cells. Frontiers in Oncology, 9, 1536.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ren, Y., & Shen, H.-M. (2019). Critical role of AMPK in redox regulation under glucose starvation. Redox Biology, 25, 101154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, Y., Butler, E. B., Tan, M. J. C. D., disease. (2013). Targeting cellular metabolism to improve cancer therapeutics. Cell death & disease, 4, e532–e532.

    Article  CAS  Google Scholar 

  41. Andrisse, S., Koehler, R. M., Chen, J. E., Patel, G. D., Vallurupalli, V. R., Ratliff, B. A., Warren, D. E., & Fisher, J. S. (2014). Role of GLUT1 in regulation of reactive oxygen species. Redox biology, 2, 764–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, J.-W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell metabolism, 3, 177–185.

    Article  PubMed  Google Scholar 

  43. Liu, H., Savaraj, N., Priebe, W., & Lampidis, T. J. (2002). Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: A strategy for solid tumor therapy (Model C). Biochemical pharmacology, 64, 1745–1751.

    Article  CAS  PubMed  Google Scholar 

  44. Li, Y.-L., Weng, H.-C., Hsu, J.-L., Lin, S.-W., Guh, J.-H., & Hsu, L.-C. (2019). The combination of MK-2206 and WZB117 exerts a synergistic cytotoxic effect against breast cancer cells. Frontiers in Pharmacology, 10, 1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wei, M., Lu, L., Sui, W., Liu, Y., Shi, X., Lv, L. J. B., communications br. (2018). Inhibition of GLUTs by WZB117 mediates apoptosis in blood-stage Plasmodium parasites by breaking redox balance. Biochemical and biophysical research communications, 503, 1154–1159.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Author A.B.L. has received research support from University Grants Commission, Government of India (F.16–6(DEC.2016)/2017(NET)); UGC-Ref. No. 951/(OBC)(CSIR-UGC NET DEC.2016).

Author information

Authors and Affiliations

Authors

Contributions

A.B.L and L.S. contributed to the study conception and design. Experimentation, data collection, and analysis were performed by A.B.L. Flow cytometric analysis and microscopic imaging were assisted by S.T.P. and G.R.A. The first draft of the manuscript was written by A.B.L. Manuscript was revised and edited by L.S. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lakshmi Subhadradevi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Littleflower, A.B., Antony, G.R., Parambil, S.T. et al. Metabolic Phenotype Intricacies on Altered Glucose Metabolism of Breast Cancer Cells upon Glut-1 Inhibition and Mimic Hypoxia In Vitro. Appl Biochem Biotechnol 195, 5838–5854 (2023). https://doi.org/10.1007/s12010-023-04373-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04373-5

Keywords

Navigation