Skip to main content
Log in

In Silico Molecular Docking Approach of Melanin Against Melanoma Causing MITF Proteins and Anticancer, Oxidation–Reduction, Photoprotection, and Drug-Binding Affinity Properties of Extracted Melanin from Streptomyces sp. strain MR28

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Melanin is a biopolymer reported for diverse biological actions to secure organisms over adverse environmental factors. In the last decade, melanin attributed considerable attention for its use in bioelectronics, photoprotection, environmental bioremediation, and drug discovery. Molecular docking study is the emerging trend in drug discovery for drug designing by targeting proteins. Considering the therapeutic nature of the melanin, we extracted melanin from Streptomyces sp. strain MR28, and it was tested for various biological activities, viz., DPPH free radical scavenging potency, sun protection factor (SPF), drug likeness by SwissADME, molecular docking of melanin on melanocyte-inducing transcription factor (MITF) proteins, cytotoxic activity on A375 malignant melanoma with induction of apoptosis study by flow cytometry, and adsorption study of melanin on doxorubicin and camptothecin drug for drug uptake by melanin. The melanin showed good scavenging potency of DPPH free radicals in a concentration-dependent manner. SPF of 38.64 ± 0.63, 55.53 ± 0.53, and 67.07 ± 0.82 were recorded at 0.06, 0.08, and 0.1 µg/mL, concentrations, respectively. SwissADME screening confirms the drug likeness of melanin. Docking of melanin with MITF proteins exhibited a maximum of − 9.2 kcal/mol binding affinity for 4ATK protein. Cytotoxicity of the melanin drug exhibited good inhibition of melanoma cells in dose-dependent way with significant IC50 of 65.61 µg/mL; apoptotic study reveals melanin showed 64.02% apoptosis for melanin and 33.8% apoptosis for standard drug (doxorubicin). The maximum adsorptions for selected drugs camptothecin and doxorubicin to melanin were recorded at 90 min. In conclusion, the extracted melanin showed significant results over many biological applications and it can be used in the pharmaceutical field to avoid chemical-based drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Seelam, S. D., Agsar, D. M. S. K. H., Shetty, P. R., Vemireddy, S., Reddy, K. M., Umesh, M. K., & Rajitha, C. H. (2021). Characterization and photoprotective potentiality of lime dwelling Pseudomonas mediated melanin as sunscreen agent against UV-B radiations. Journal of Photochemistry and Photobiology B: Biology, 216, 112126. https://doi.org/10.1016/j.jphotobiol.2021.112126

    Article  CAS  PubMed  Google Scholar 

  2. ElObeid, A. S., Kamal-Eldin, A., Abdelhalim, M. A. K., & Haseeb, A. M. (2017). Pharmacological properties of melanin and its function in health. Basic and Clinical Pharmacology and Toxicology, 120, 515–522. https://doi.org/10.1111/bcpt.12748

    Article  CAS  PubMed  Google Scholar 

  3. Sajjan, S., Kulkarni, G., Yaligara, V., Kyoung, L., & Karegoudar, T. B. (2010). Purification and physiochemical characterization of melanin pigment from Klebsiella sp GSK. Journal of Microbiology and Biotechnology, 20, 1513–1520. https://doi.org/10.4014/jmb.1002.02006

    Article  CAS  PubMed  Google Scholar 

  4. El-Naggar, N. E. A., & El-Ewasy, S. M. (2017). Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific Reports, 7, 1–19. https://doi.org/10.1038/srep42129

    Article  CAS  Google Scholar 

  5. Madhusudhan, D. N., Mazhari, B. B. Z., Dastager, S. G., & Agsar, D. (2014). Production and cytotoxicity of extracellular insoluble and droplets of soluble melanin by Streptomyces lusitanus DMZ-3. BioMed Research International, 2014, 306895. https://doi.org/10.1155/2014/306895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, S. I., Liu, S., Brooks, G. J., Lanctot, Y., & Gruber, J. V. (2018). Reliable and simple spectrophotometric determination of sun protection factor: A case study using organic UV filter-based sunscreen products. Journal of Cosmetic Dermatology, 17, 518–522. https://doi.org/10.1111/jocd.12390

    Article  PubMed  Google Scholar 

  7. Brenner, M., & Hearing, J. V. (2008). The protective role of melanin against UV. Photochemistry and Photobiology, 84, 539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x.The

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi, J., Lee, D. H., Jang, H., Park, S. Y., & Seol, J. W. (2020). Naringenin exerts anticancer effects by inducing tumor cell death and inhibiting angiogenesis in malignant melanoma. International Journal of Medical Science, 17, 3049–3057. https://doi.org/10.7150/ijms.44804

    Article  CAS  Google Scholar 

  9. Pisano, M., Dettori, M. A., Fabbri, D., Delogu, G., Palmieri, G., & Rozzo, C. (2021). Anticancer activity of two novel hydroxylated biphenyl compounds toward malignant melanoma cells. International Journal of Molecular Sciences, 22, 5636. https://doi.org/10.3390/ijms22115636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yalcin, M., El-Athman, R., Ouk, K., Priller, J., & Relogio, A. (2020). Analysis of the circadian regulation of cancer hallmarks by a cross-platform study of colorectal cancer time-series data reveals an association with genes involved in Huntington’s disease. Cancers (Basel), 12, 1–25. https://doi.org/10.3390/cancers12040963

    Article  CAS  Google Scholar 

  11. Phung, B., Ciesla, M., Sanna, A., Guzzi, N., Beneventi, G., Cao Thi Ngoc, P., Lauss, M., Cabrita, R., Cordero, E., Bosch, A., Rosengren, F., Hakkinen, J., Griewank, K., Paschen, A., Harbst, K., Olsson, H., Ingvar, C., Carneiro, A., Tsao, H., … Jonsson, G. (2019). The X-linked DDX3X RNA helicase dictates translation reprogramming and metastasis in melanoma. Cell Reports, 27, 3573-3586.e7. https://doi.org/10.1016/j.celrep.2019.05.069

    Article  CAS  PubMed  Google Scholar 

  12. Zane, P. A., Brindle, S. D., Gause, D. O., O’Buck, A. J., Raghavan, P. R., & Tripp, S. L. (1990). Physicochemical factors associated with binding and retention of compounds in ocular melanin of rats: Correlations using data from whole-body autoradiography and molecular modeling for multiple linear regression analyses. Pharmaceutical Research, 7, 935–941. https://doi.org/10.1023/A:1015997823755

    Article  CAS  PubMed  Google Scholar 

  13. Debing, I., Ijzerman, A. P., & Vauqelin, G. (1988). Melanosome binding and oxidation-reduction properties of synthetic L-dopa-melanin as in vitro tests for drug toxicity. Molecular Pharmacology, 33, 470–476.

    CAS  PubMed  Google Scholar 

  14. Atlasik, B., Stephen, K., & Wilczok, T. (1980). Interaction of drugs with ocular melanin in vitro. Experimental Eye Research, 30, 325–331. https://doi.org/10.1016/0014-4835(80)90047-0

    Article  CAS  PubMed  Google Scholar 

  15. Shimada, K., Baweja, R., Sokoloski, T., & Patil, P. N. (1976). Binding characteristics of drugs to synthetic levodopa melanin. Journal of Pharmaceutical Sciences, 65, 1057–1060. https://doi.org/10.1002/jps.2600650725

    Article  CAS  PubMed  Google Scholar 

  16. Rudrappa, M. M. S. K., Kumar, R. S., Almansour, A. I., Perumal, K., & Nayaka, S. (2022). Bioproduction, purification and physicochemical characterization of melanin from Streptomyces sp. strain MR28. Microbiological Research, 263, 127130. https://doi.org/10.1016/j.micres.2022.127130

    Article  CAS  PubMed  Google Scholar 

  17. Barretto, D. A., & Vootla, S. K. (2020). Biological activities of melanin pigment extracted from Bombyx mori gut-associated yeast Cryptococcus rajasthanensis KY627764. World Journal of Microbiology and Biotechnology, 36, 1–17. https://doi.org/10.1007/s11274-020-02924-0

    Article  CAS  Google Scholar 

  18. Dutra, E. A., Da-Costa E-Oliveira, D. A. G., Kedor-Hackmann, E. R. M., & Miritello Santoro, M. I. R. (2004). Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Brazilian Journal of Pharmaceutical Sciences, 40, 381–385. https://doi.org/10.1590/S1516-93322004000300014

    Article  CAS  Google Scholar 

  19. Mbanga, L., Mulenga, M., Mpiana, P. T., Bokolo, K., Mumbwa, M., & Mvingu, K. (2014). Determination of sun protection factor (SPF) of some body creams and lotions marketed in Kinshasa by ultraviolet spectrophotometry. International Journal of Advanced Research in Chemical Scienceis, 1, 7–13.

    Google Scholar 

  20. Olayemi, O., Isimi, C., Ekere, K., Gbate, M. A., & Emeje, M. (2017). Determination of sun protection factor number : An emerging in – vitro tool for predicting UV protection capabilities. International Journal of Herbal Medicine, 5, 6–9.

    Google Scholar 

  21. Nag, A., Verma, P., Paul, S., & Kundu, R. (2022). In silico analysis of the apoptotic and HPV inhibitory roles of some selected phytochemicals detected from the rhizomes of greater cardamom. Applied Biochemistry and Biotechnolgy, 194, 4867–4891. https://doi.org/10.1007/s12010-022-04006-3

    Article  CAS  Google Scholar 

  22. Pogenberg, V., Ogmundsdottir, M. H., Bergsteinsdottir, K., Schepsky, A., Phung, B., Deineko, V., Milewski, M., Steingrimsson, E., & Wilmanns, M. (2012). Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes and Development, 26, 2647–2658. https://doi.org/10.1101/gad.198192.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kukenshoner, T., Wohlwend, D., Niemoller, C., Dondapati, P., Speck, J., Adeniran, A. V., Nieth, A., Gerhardt, S., Einsle, O., Muller, K. M., & Arndt, K. M. (2014). Improving coiled coil stability while maintaining specificity by a bacterial hitchhiker selection system. Journal of Structural Biology, 186, 335–348. https://doi.org/10.1016/j.jsb.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Pogenberg, V., Ballesteros-Alvarez, J., Schober, R., Sigvaldadottir, I., Obarska-Kosinska, A., Milewski, M., Schindl, R., Ogmundsdottir, M. H., Steingrimsson, E., & Wilmanns, M. (2020). Mechanism of conditional partner selectivity in MITF/TFE family transcription factors with a conserved coiled coil stammer motif. Nucleic Acids Research, 48, 934–948. https://doi.org/10.1093/nar/gkz1104

    Article  CAS  PubMed  Google Scholar 

  25. Moller, K., Sigurbjornsdottir, S., Arnthorsson, A. O., Pogenberg, V., Dilshat, R., Fock, V., Brynjolfsdottir, S. H., Bindesboll, C., Bessadottir, M., Ogmundsdottir, H. M., Simonsen, A., Larue, L., Wilmanns, M., Thorsson, V., Steingrimsson, E., & Ogmundsdottir, M. H. (2019). MITF has a central role in regulating starvation-induced autophagy in melanoma. Scientific Reports, 9, 1–12. https://doi.org/10.1038/s41598-018-37522-6

    Article  CAS  Google Scholar 

  26. Rudrappa, M., Rudayni, H. A., Assiri, R. A., Bepari, A., Basavarajappa, D. S., Nagaraja, S. K., Chakraborty, B., Swamy, P. S., Agadi, S. N., Niazi, S. K., & Nayaka, S. (2022). Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials, 12, 493. https://doi.org/10.3390/nano12030493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh, H., Du, J., Singh, P., & Yi, T. H. (2018). Role of green silver nanoparticles synthesized from Symphytum officinale leaf extract in protection against UVB - induced photoaging. Journal of Nanostructure in Chemistry, 8, 359–368. https://doi.org/10.1007/s40097-018-0281-6

    Article  CAS  Google Scholar 

  28. Tran-Ly, A. N., Reyes, C., Schwarze, F. W. M. R., & Ribera, J. (2020). Microbial production of melanin and its various applications. World Journal of Microbiology and Biotechnology, 36, 170. https://doi.org/10.1007/s11274-020-02941-z

    Article  CAS  PubMed  Google Scholar 

  29. Oh, J. J., Kim, J. Y., Son, S. H., Jung, W. J., Kim, D. H., Seo, J. W., & Kim, G. H. (2021). Fungal melanin as a biocompatible broad-spectrum sunscreen with high antioxidant activity. RSC Advances, 11, 19682–19689. https://doi.org/10.1039/d1ra02583j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, L. F., & Rhim, J. W. (2019). Isolation and characterization of melanin from black garlic and sepia ink. Lwt, 99, 17–23. https://doi.org/10.1016/j.lwt.2018.09.033

    Article  CAS  Google Scholar 

  31. Eskandari, S., Etemadifar Z. (2021). Biocompatibility and radioprotection by newly characterized melanin pigment and its production from Dietzia schimae NM3 in optimized whey medium by response surface methodology. Annals of Microbiology, 71. https://doi.org/10.1186/s13213-021-01628-6.

  32. Fawwaz, M., Saleh, A., & Makalalag, M. I. (2017). Sun protection factor activity of unregistered facial cream in Makassar City. International Journal of Chemical Concepts, 3, 342–346.

    CAS  Google Scholar 

  33. Isaq, M., Somu, P., Acharya, D., Gomez, L. A., Thathapudi, J. J., Ramachandra, Y. L., Rudraiah, S. B., Ravi, P., Rai, P. S., Rosalin, R., Poojari, C. C., & Lee, Y. R. (2022). Phytochemical screening and bioactivity studies of endophytes Cladosporium sp. isolated from the endangered plant Vateria Indica using In silico and In vitro analysis. Applied Biochemistry and Biotechnology, 194, 4546–4569. https://doi.org/10.1007/s12010-022-03933-5

    Article  CAS  PubMed  Google Scholar 

  34. James, N., & Ramanathan, K. (2018). Ligand-based pharmacophore screening strategy: A pragmatic approach for targeting HER proteins. Applied Biochemistry and Biotechnology, 186, 85–108. https://doi.org/10.1007/s12010-018-2724-4

    Article  CAS  PubMed  Google Scholar 

  35. Saravanan, R., Raja, K., & Shanthi, D. (2022). GC–MS Analysis, Molecular docking and pharmacokinetic properties of phytocompounds from Solanum torvum unripe fruits and its effect on breast cancer target protein. Applied Biochemistry and Biotechnology, 194, 529–555. https://doi.org/10.1007/s12010-021-03698-3

    Article  CAS  PubMed  Google Scholar 

  36. Mendie, L. E., & Hemalatha, S. (2022). Molecular docking of phytochemicals targeting GFRs as therapeutic sites for cancer: An In silico study. Applied Biochemistry and Biotechnology, 194, 215–231. https://doi.org/10.1007/s12010-021-03791-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morris, G. M., & Wilby, M. L. (2008). Molecular docking. Methods in Molecular Biology, 443, 365–382. https://doi.org/10.1007/978-1-59745-177-2_19

    Article  CAS  PubMed  Google Scholar 

  38. Akin, S., Demir, E. A., Colak, A., Kolcuoglu, Y., Yildirim, N., & Bekircan, O. (2019). Synthesis, biological activities and molecular docking studies of some novel 2,4,5-trisubstituted-1,2,4-triazole-3-one derivatives as potent tyrosinase inhibitors. Journal of Molecular Structure, 1175, 280–286. https://doi.org/10.1016/j.molstruc.2018.07.065

    Article  CAS  Google Scholar 

  39. Sim, D. Y., & Jung, H. J. (2016). Anticancer activity of 7,8-dihydroxyflavone in melanoma cells via downregulation of α-MSH/cAMP/MITF pathway. Oncology Reports, 36, 528–534. https://doi.org/10.3892/or.2016.4825

    Article  CAS  PubMed  Google Scholar 

  40. Beberok, A., Rok, J., Rzepka, Z., Marciniec, K., Boryczka, S., Wrzesniok, D. (2020). The role of MITF and Mcl-1 proteins in the antiproliferative and proapoptotic effect of ciprofloxacin in amelanotic melanoma cells: In silico and in vitro study. Toxicology InVitro, 66. https://doi.org/10.1016/j.tiv.2020.104884.

  41. Kong, Y., Sun, W., & Wu, P. (2020). Hyperoside exerts potent anticancer activity in skin cancer. Frontiers in Bioscience-Landmark, 25, 463–479.

    Article  CAS  Google Scholar 

  42. Chakraborty, B., Kumar, R. S., Almansour, A. I., Kotresha, D., Rudrappa, M., Pallavi, S. S., Hiremath, H., Perumal, K., & Nayaka, S. (2021). Evaluation of antioxidant, antimicrobial and antiproliferative activity of silver nanoparticles derived from Galphimia glauca leaf extract. Journal of King Saud University – Science, 33, 101660. https://doi.org/10.1016/j.jksus.2021.101660

    Article  Google Scholar 

  43. Alotaibi, A. A., Bepari, A., Assiri, R. A., Niazi, S. K., Nayaka, S., Rudrappa, M., Nagaraja, S. K., & Bhat, M. P. (2021). Saussurea lappa exhibits anti-oncogenic effect in hepatocellular carcinoma, HepG2 cancer cell line by Bcl-2 mediated apoptotic pathway and mitochondrial cytochrome C release. Current Issues in Molecular Biology, 43, 1114–1132. https://doi.org/10.3390/cimb43020079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Powis, G., Ames, M. M., & Kovach, J. S. (1981). Dose-dependent pharmacokinetics and cancer chemotherapy. Cancer Chemotheraphy and Pharmacology, 6, 1–9.

    CAS  Google Scholar 

  45. Polapally, R., Mansani, M., Rajkumar, K., Burgula, S., Hameeda, B., Alhazmi, A., Bantun, F., Almalki, A. H., Haque, S., El Enshasy, H. A., & Sayyed, R. Z. (2022). Melanin pigment of Streptomyces puniceus RHPR9 exhibits antibacterial, antioxidant and anticancer activities. PLoS One, 17, 1–14. https://doi.org/10.1371/journal.pone.0266676

    Article  CAS  Google Scholar 

  46. Beretta, G., Gelmini, F., Fontana, F., Moretti, R. M., Marelli, M. M., & Limonta, P. (2018). Semi-preparative HPLC purification of δ-tocotrienol (δ-T3) from Elaeis guineensis Jacq. and Bixa orellana L. and evaluation of its in vitro anticancer activity in human A375 melanoma cells. Natural Product Research, 32, 1130–1135. https://doi.org/10.1080/14786419.2017.1320793

    Article  CAS  PubMed  Google Scholar 

  47. Segat, G. C., Moreira, C. G., Santos, E. C., Heller, M., Schwanke, R. C., Aksenov, A. V., Aksenov, N. A., Aksenov, D. A., Kornienko, A., Marcon, R., & Calixto, J. B. (2020). A new series of acetohydroxamates shows in vitro and in vivo anticancer activity against melanoma. Investigational New Drugs, 38, 977–989. https://doi.org/10.1007/s10637-019-00849-6

    Article  CAS  PubMed  Google Scholar 

  48. Kiuchi, Y., Terakawa, N., Nakata, T., Yamasaki, K., Saito, Y., Ito, N., & Okada, K. (2004). Binding affinity of bunazosin, dorzolamide, and timolol to synthetic melanin. Japanese Journal of Ophthalmology, 48, 34–36.

    Article  CAS  PubMed  Google Scholar 

  49. Sajjan, S. S., Santoshkumar, M., Sanjeevkumar, S., & Karegoudar, T. B. (2013). Binding affinity of amlodipine, atorvastatin and telmisartan drugs to purified bacterial melanin pigment: A kinetic study. Journal of Pharmaceutical Investigation, 43, 267–278. https://doi.org/10.1007/s40005-013-0071-6

    Article  CAS  Google Scholar 

  50. Cuzzubbo, S., & Carpentier, A. F. (2021). Applications of melanin and melanin-like nanoparticles in cancer therapy: A review of recent advances. Cancers, 13, 1463. https://doi.org/10.3390/cancers13061463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yue, Y., & Zhao, X. (2021). Melanin-like nanomedicine in photothermal therapy applications. International Journal of Molecular Sciences, 22, 399. https://doi.org/10.3390/ijms22010399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gessler, N. N., Egorova, A. S., & Belozerskaya, T. A. (2014). Melanin pigments of fungi under extreme environmental conditions (Review). Applied Biochemistry and Microbiology, 50, 105–113. https://doi.org/10.1134/S0003683814020094

    Article  CAS  Google Scholar 

  53. Lu, Y., Ye, M., Song, S., Li, L., Shaikh, F., & Li, J. (2014). Isolation, purification, and anti-aging activity of melanin from Lachnum singerianum. Applied Biochemistry and Biotechnology, 174, 762–771. https://doi.org/10.1007/s12010-014-1110-0

    Article  CAS  PubMed  Google Scholar 

  54. Gonçalves, R. D. C. R., Kitagawa, R. R., Raddi, M. S. G., Carlos, I. Z., & Pombeiro-Sponchiado, S. R. (2013). Inhibition of nitric oxide and tumour necrosis factor-α production in peritoneal macrophages by Aspergillus nidulans melanin. Biological and Pharmaceutical Bulletin, 36, 1915–1920. https://doi.org/10.1248/bpb.b13-00445

    Article  PubMed  Google Scholar 

  55. Kurian, N. K., & Bhat, S. G. (2017). Protoprotection and anti-inflammatory properties of non–cytotoxic melanin from marine isolate Providencia rettgeri strain BTKKS1. Biosciences Biotechnology Research Asia, 14, 1475–1484. https://doi.org/10.13005/bbra/2594

    Article  Google Scholar 

  56. El-Obeid, A., ELTahir, K. E. H., Elhag, H., & Haseeb, A. M. (2016). Anti-ulcerogenic effects of Nigella sativa L. melanin. World Journal of Pharmaceutical Research, 5, 1–16.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of P.G Studies in Botany, Karnatak University Dharwad, Karnataka, India, for laboratory facilities. The authors are also thankful to the University Scientific and Instrumentation Centre (USIC) and Sophisticated Analytical Instrumentation Facility (SAIF), Karnatak University Dharad, for extending the instrument facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Muthuraj Rudrappa: methodology, formal analysis and investigation, and writing—original draft preparation. Sreenivasa Nayaka: resources and supervision. Raju Suresh Kumar: writing—review and editing. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sreenivasa Nayaka.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

The authors have agreed to participate in the publication of the paper.

Consent for Publication

All authors have agreed to publish the paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudrappa, M., Nayaka, S. & Kumar, R.S. In Silico Molecular Docking Approach of Melanin Against Melanoma Causing MITF Proteins and Anticancer, Oxidation–Reduction, Photoprotection, and Drug-Binding Affinity Properties of Extracted Melanin from Streptomyces sp. strain MR28. Appl Biochem Biotechnol 195, 4368–4386 (2023). https://doi.org/10.1007/s12010-023-04358-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04358-4

Keywords

Navigation