Skip to main content
Log in

Biocompatibility of Veratric Acid–Encapsulated Chitosan/Methylcellulose Hydrogel: Biological Characterization, Osteogenic Efficiency with In Silico Molecular Modeling

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The limitations of graft material, and surgical sites for autografts in bone defects treatment have become a significant challenge in bone tissue engineering. Phytocompounds markedly affect bone metabolism by activating the osteogenic signaling pathways. The present study investigated the biocompatibility of the bio-composite thermo-responsive hydrogels consisting of chitosan (CS), and methylcellulose (MC) encapsulated with veratric acid (VA) as a restorative agent for bone defect treatment. The spectroscopy analyses confirmed the formation of CS/MC hydrogels and VA encapsulated CS/MC hydrogels (CS/MC-VA). Molecular analysis of the CS-specific MC decamer unit with VA complex exhibited a stable integration in the system. Further, Runx2 (runt-related transcription factor 2) was found in the docking mechanism with VA, indicating a high binding affinity towards the functional site of the Runx2 protein. The formulated CS/MC-VA hydrogels exhibited biocompatibility with the mouse mesenchymal stem cells, while VA promoted osteogenic differentiation in the stem cells, which was verified by calcium phosphate deposition through the von Kossa staining. The study results suggest that CS/MC-VA could be a potential therapeutic alternative source for bone regeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data that support the findings of this study will be available from the corresponding author upon reasonable request.

References

  1. Crockett, J. C., Rogers, M. J., Coxon, F. P., Hocking, L. J., & Helfrich, M. H. (2011). Bone remodelling at a glance. Journal of Cell Science, 124(7), 991–998.

    CAS  PubMed  Google Scholar 

  2. Florencio-Silva, R., da Sasso, G. R. S., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: Structure, Function, and factors that influence bone cells. BioMed Research International, 421746, 1–17.

    Google Scholar 

  3. Holmes, D. (2017). Non-union bone fracture: A quicker fix. Nature, 550, S193–S193.

    CAS  PubMed  Google Scholar 

  4. Hunter, D. J., McDougall, J. J., & Keefe, F. J. (2008). The symptoms of osteoarthritis and the genesis of pain. Rheumatic Diseases Clinics of North America, 34(3), 623–643.

    PubMed  PubMed Central  Google Scholar 

  5. Lu, T., Li, Y., & Chen, T. (2013). Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 8(1), 337–350.

    PubMed  PubMed Central  Google Scholar 

  6. Rizwan, M., Yahya, R., Hassan, A., Yar, M., Omar, A. R., Azari, P., Azzahari, A. D., Selvanathan, V., Al-Maleki, A. R., & Venkatraman, G. (2018). Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. Journal of Applied Polymer Science, 135(9), 45905.

    Google Scholar 

  7. Manjunath, K. S., Sridhar, K., Gopinath, V., Sankar, K., Sundaram, A., Gupta, N., Shiek, A. S. S. J., & Shantanu, P. S. (2020). Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Biomedical Materials, 16(1), 015028.

    PubMed  Google Scholar 

  8. Bai, X., Gao, M., Syed, S., Zhuang, J., Xu, X., & Zhang, X. Q. (2018). Bioactive hydrogels for bone regeneration. Bioactive Materials, 3(4), 401–417.

    PubMed  PubMed Central  Google Scholar 

  9. Lee, W., & Park, J. (2016). 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds. Science and Reports, 6(1), 29408.

    CAS  Google Scholar 

  10. Cui, Z. K., Kim, S., Baljon, J. J., Wu, B. M., Aghaloo, T., & Lee, M. (2019). Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nature Communications, 10(1), 3523.

    PubMed  PubMed Central  Google Scholar 

  11. Dong, L., Wang, S. J., Zhao, X. R., Zhu, Y. F., & Yu, J. K. (2017). 3D- Printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Science and Reports, 7(1), 13412.

    Google Scholar 

  12. Liu, S. Q., Tay, R., Khan, M., Rachel Ee, P. L., Hedrick, J. L., & Yang, Y. Y. (2010). Synthetic hydrogels for controlled stem cell differentiation. Soft Matter, 6(1), 67–81.

    CAS  Google Scholar 

  13. Martins, A. M., Alves, C. M., Kurtis Kasper, F., Mikos, A. G., & Reis, R. L. (2010). Responsive and situ-forming chitosan scaffolds for bone tissue engineering applications: An overview of the last decade. Journal of Materials Chemistry, 20(9), 1638–1645.

    CAS  Google Scholar 

  14. Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., & Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10), 1374.

    PubMed  PubMed Central  Google Scholar 

  16. Venugopal, E., Rajeswaran, N., Sahanand, K. S., Bhattacharyya, A., & Rajendran, S. (2019). In vitro evaluation of phytochemical loaded electrospun gelatin nanofibers for application in bone and cartilage tissue engineering. Biomedical Materials, 14(1), 015004.

    CAS  Google Scholar 

  17. Zhang, Y., Yu, T., Peng, L., Sun, Q., Wei, Y., & Han, B. (2020). Advancements in hydrogel-based drug sustained release systems for bone tissue engineering. Frontiers in Pharmacology, 11, 622.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi, W. S., Shin, P. G., Lee, J. H., & Kim, G. D. (2012). The regulatory effect of veratric acid on no production in LPS-stimulated RAW264.7 Macrophage Cells. Cell. Immunol., 280(2), 164–170.

    CAS  PubMed  Google Scholar 

  19. Shin, S., Jung, E., Kim, S., Lee, K. E., Youm, J. K., & Park, D. (2013). Antagonist effects of veratric acid against UVB-induced cell damages. Molecules, 18(5), 5405–5419.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sruthi, R., Balagangadharan, K., & Selvamurugan, N. (2020). Polycaprolactone/ polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surfaces B Biointerfaces, 193, 111110.

    CAS  PubMed  Google Scholar 

  21. Fan, J. J., Cao, L. G., Wu, T., Wang, D. X., Jin, D., Jiang, S., Zhang, Z. Y., Bi, L., & Pei, G. X. (2011). The dose-effect of icariin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cells. Molecules, 16(12), 10123–10133.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardcastle, A. C., Aucott, L., Reid, D. M., & Macdonald, H. M. (2011). Associations between dietary flavonoid intakes and bone health in a scottish population. Journal of Bone and Mineral Research, 26(5), 941–947.

    CAS  PubMed  Google Scholar 

  23. Menon, A. H., Soundarya, S. P., Sanjay, V., Chandran, S. V., Balagangadharan, K., & Selvamurugan, N. (2018). Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydrate Polymers, 195, 356–367.

    CAS  PubMed  Google Scholar 

  24. Costa-Pinto, A. R., Reis, R. L., & Neves, N. M. (2011). scaffolds based bone tissue engineering: The role of chitosan. Tissue Engineering. Part B, Reviews, 17(5), 331–347.

    CAS  PubMed  Google Scholar 

  25. Keller, L., Regiel-Futyra, A., Gimeno, M., Eap, S., Mendoza, G., Andreu, V., Wagner, Q., Kyzioł, A., Sebastian, V., Stochel, G., Arruebo, M., & Benkirane-Jessel, N. (2017). Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine: Nanotechnology, Biology and Medicine, 13(7), 2231–2240.

    CAS  PubMed  Google Scholar 

  26. Lavanya, K., Chandran, S. V., Balagangadharan, K., & Selvamurugan, N. (2020). Temperature- and PH-responsive chitosan-based injectable hydrogels for bone tissue engineering. Materials Science and Engineering C, 111, 110862.

    CAS  PubMed  Google Scholar 

  27. Murugan, C., Venkatesan, S., & Kannan, S. (2017). Cancer therapeutic proficiency of dual-targeted mesoporous silica nanocomposite endorses combination drug delivery. ACS Omega, 2(11), 7959–7975.

    CAS  PubMed  Google Scholar 

  28. Lioubavina-Hack, N., Karring, T., Lynch, S. E., & Lindhe, J. (2005). Methyl cellulose gel obstructed bone formation by GBR: An experimental study in rats. Journal of Clinical Periodontology, 32(12), 1247–1253.

    CAS  PubMed  Google Scholar 

  29. Kim, M. H., Kim, B. S., Park, H., Lee, J., & Park, W. H. (2018). Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. International Journal of Biological Macromolecules, 109, 57–64.

    CAS  PubMed  Google Scholar 

  30. Tak, W. S., Kim, D. J., & Ryu, S. C. (2018). Preparation and properties of hydroxyapatite/methylcellulose for bone graft. Journal of the Korean Ceramic Society, 55(2), 145–152.

    CAS  Google Scholar 

  31. Ghanaati, S., Barbeck, M., Hilbig, U., Hoffmann, C., Unger, R. E., Sader, R. A., Peters, F., & Kirkpatrick, C. J. (2011). An injectable bone substitute composed of beta-tricalcium phosphate granules, methylcellulose and hyaluronic acid inhibits connective tissue influx into its implantation bed in vivo. Acta Biomaterialia, 7(11), 4018–4028.

    CAS  PubMed  Google Scholar 

  32. Hong, D., Fritz, A. J., Gordon, J. A., Tye, C. E., Boyd, J. R., Tracy, K. M., Frietze, S. E., Carr, F. E., Nickerson, J. A., Van Wijnen, A. J., Imbalzano, A. N., Zaidi, S. K., Lian, J. B., Stein, J. L., & Stein, G. S. (2019). RUNX1-dependent mechanisms in biological control and dysregulation in cancer. Journal of Cellular Physiology, 234(6), 8597–8609.

    CAS  PubMed  Google Scholar 

  33. Shariatinia, Z., & Jalali, A. M. (2018). Chitosan-Based hydrogels: Preparation, properties and applications. International Journal of Biological Macromolecules, 115, 194–220.

    CAS  PubMed  Google Scholar 

  34. Vishal Gupta, N., Shivakumar, H. G. (2012). Investigation of swelling behavior and mechanical properties of a ph-sensitive superporous hydrogel composite. Iranian Journal of Pharmaceutical Research. Spring, 11(2), 481–93.

  35. He, F. (2011). Bradford Protein Assay. BIO-PROTOCOL, 101, 45. https://doi.org/10.21769/BioProtoc.45

    Article  Google Scholar 

  36. Murugan, C., Rayappan, K., Thangam, R., Bhanumathi, R., Shanthi, K., Vivek, R., Thirumurugan, R., Bhattacharyya, A., Sivasubramanian, S., Gunasekaran, P., & Kannan, S. (2016). Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: An improved nanomedicine strategy. Science and Reports, 6(1), 34053.

    CAS  Google Scholar 

  37. Leena, R. S., Vairamani, M., & Selvamurugan, N. (2017). Alginate/gelatin scaffolds incorporated with silibinin-loaded chitosan nanoparticles for bone formation in vitro. Colloids and Surfaces. B, Biointerfaces, 158, 308–318.

    CAS  PubMed  Google Scholar 

  38. Gothard, D., Smith, E. L., Kanczler, J. M., Black, C. R., Wells, J. A., Roberts, C. A., White, L. J., Qutachi, O., Peto, H., Rashidi, H., Rojo, L., Stevens, M. M., El Haj, A. J., Rose, F. R. A. J., Shakesheff, K. M., & Oreffo, R. O. C. (2015). In Vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS ONE, 10(12), e0145080.

    PubMed  PubMed Central  Google Scholar 

  39. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment Factors in Database Screening. Journal of Medicinal Chemistry, 47, 1750–1759.

    CAS  PubMed  Google Scholar 

  40. Armiento, A. R., Hatt, L. P., Sanchez Rosenberg, G., Thompson, K., & Stoddart, M. J. (2020). Functional biomaterials for bone regeneration: A lesson in complex biology. Advanced Functional Materials, 30, 1909874.

    CAS  Google Scholar 

  41. O’Brien, F. J. (2011). Biomaterials & Scaffolds for tissue engineering. Materials Today, 14(3), 88–95.

    Google Scholar 

  42. Chen, S. H., Wang, X. L., Xie, X. H., Zheng, L. Z., Yao, D., Wang, D. P., Leng, Y., Zhang, G., & Qin, L. (2012). Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: An in vitro efficacy study. Acta Biomaterialia, 8(8), 3128–3137.

    CAS  PubMed  Google Scholar 

  43. Hsu, Y. L., Chang, J. K., Tsai, C. H., Chien, T. T. C., & Kuo, P. L. (2007). Myricetin induces human osteoblast differentiation through bone morphogenetic protein-2/P38 mitogen-activated protein kinase pathway. Biochemical Pharmacology, 73(4), 504–514.

    CAS  PubMed  Google Scholar 

  44. Morris, C., Thorpe, J., Ambrosio, L., & Santin, M. (2006). The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts. Journal of Nutrition, 136(5), 1166–1170.

    CAS  PubMed  Google Scholar 

  45. Zhang, X., Zhou, C., Zha, X., Xu, Z., Li, L., Liu, Y., Xu, L., Cui, L., Xu, D., & Zhu, B. (2015). Apigenin promotes osteogenic differentiation of human mesenchymal stem cells through JNK and P38 MAPK pathways. Molecular and Cellular Biochemistry, 407(1–2), 41–50.

    CAS  PubMed  Google Scholar 

  46. Kocak, F. Z., Talari, A. C. S., Yar, M., & Rehman, I. U. (2020). In-situ forming PH and thermosensitive injectable hydrogels to stimulate angiogenesis: Potential candidates for fast bone regeneration applications. International Journal of Molecular Sciences, 21(5), 1633.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Narayanan, V., & Sumathi, S. (2019). Preparation, characterization and in vitro biological study of silk fiber/methylcellulose composite for bone tissue engineering applications. Polymer Bulletin, 76(6), 2777–2800.

    CAS  Google Scholar 

  48. Carbinatto, F. M., de Castro, A. D., Evangelista, R. C., & Cury, B. S. F. (2014). Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian Journal of Pharmaceutical Sciences, 9(1), 27–34.

    Google Scholar 

  49. Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of biomaterial–cell interactions by adsorbed proteins: A review. Tissue Engineering, 11(1–2), 1–18.

    CAS  PubMed  Google Scholar 

  50. Boardman, S. J., Lad, R., Green, D. D., & Thornton, P. (2017). Chitosan hydrogels for targeted dye and protein adsorption. Journal of Applied Polymer Science, 134, 44846.

    Google Scholar 

  51. Bonetti, L., De Nardo, L., & Farè, S. (2021). Thermo-responsive methylcellulose hydrogels: From design to applications as smart biomaterials. Tissue Engineering Part B: Reviews, 27(5), 486–513.

    CAS  PubMed  Google Scholar 

  52. Ding, J., Zhang, J., Li, J., Li, D., Xiao, C., Xiao, H., Yang, H., Zhuang, X., & Chen, X. (2019). Electrospun polymer biomaterials. Prsogress in Polymer Science., 90, 1–34.

    CAS  Google Scholar 

  53. Feng, X., Li, J., Zhang, X., Liu, T., Ding, J., & Chen, X. (2019). Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release, 302, 19–41.

    CAS  PubMed  Google Scholar 

  54. Rambhia, K. J., & Ma, P. X. (2015). Controlled drug release for tissue engineering. Journal of Controlled Release, 219, 119–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanan, W., Panichpakdee, J., & Saengsuwan, S. (2019). Novel Biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. European Polymer Journal, 112, 678–687.

    CAS  Google Scholar 

Download references

Acknowledgements

All the authors were grateful to the authorities of their institutes and Researchers Supporting Project number (RSP-2023-R20), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, DK, BB, AMK, and WL; data curation, DK, BB, KP, VA; formal analysis and methodology, DK, KP, VA; formal analysis and bioinformatics, ME; writing—original draft preparation, BB and DK; data analysis and interpretation, NAA, WL, AMK; writing—review and editing, BB, MVA, NAA, SP, UI, VA, AMK, and WL; recourses and validation WL, BB. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kaliannan Durairaj or Amin Mousavi Khaneghah.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors gave their consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Balamuralikrishnan Balasubramanian equally contributed as a first author.

Highlights

• Veratric acid (VA) is a phenolic phytocompound as potential use for clinical use.

• The VA-loaded chitosan and methylcellulose hydrogels (CS/MC-VA) was prepared.

• The bioavailability and osteogenic efficacy were investigated with molecular modeling analysis.

• The CS/MC-VA showed no cytotoxic effects on to mouse mesenchymal stem cells.

• The CS/MC-VA showed potential osteogenic efficacy for bone regeneration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durairaj, K., Balasubramanian, B., Arumugam, V.A. et al. Biocompatibility of Veratric Acid–Encapsulated Chitosan/Methylcellulose Hydrogel: Biological Characterization, Osteogenic Efficiency with In Silico Molecular Modeling. Appl Biochem Biotechnol 195, 4429–4446 (2023). https://doi.org/10.1007/s12010-023-04311-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04311-5

Keywords

Navigation