Skip to main content
Log in

Polyaniline Entrapped Water-Dispersible 3MPA-ZnSe Quantum Dots and Their Application for the Development of an Enzymatic Electrochemical Nanobiosensor for the Detection of 17β-Estradiol, an Endocrine-Disrupting Compound

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

17β-estradiol is used as a growth and fertility stimulant in the agronomic sector to induce fertility and manipulate reproductive characteristics in animals. However, unintended or unregulated distribution and exposure to even significant low levels of 17β-estradiol estrogen have detrimental health implication that can lead to reproductive abnormalities and even cancer. This could have severe effect on the ecosystem imbalance, food safety, to such a degree that its health impact necessitates rapid methods to probe for its prevalence and occurrence in the environment. Herein a simple, robust, sensitive and once-off use electrochemical biosensor to detect 17β-estradiol is developed, using 3-mercaptopropionic acid capped zinc selenide quantum dots trapped within the polyaniline (PANI) framework structure. The biosensor’s interaction with the substrate was based on the capability of the hemeprotein, horseradish peroxidase (HRP) enzyme (i.e., baroreceptor) to alternatively catalyze phenolic alcohols. The biosensor displayed a significantly low limit of detection limit (LOD) of value 0.2 × 10−6 M towards 17β-estradiol. The Mechaelis-Menten constant (Km) with the magnitude of 0.64 × 10−6 M was obtained; this indicates an outstanding affinity of the biosensing films towards 17β-estradiol. Subsequently, the developed biosensor was able to accurately and efficiently measure successive concentrations of 17β-estradiol from 0.2 × 10 to 4 × 10−6 M. The fabricated biosensor showed good selectivity towards 17β-estradiol compared to the other estrogenic endocrine-disrupting compounds such as estrone (E1), ethnylstradiol (EE2), and estriol (E3). The biosensor was capable of detecting 17β-estradiol in spiked tap water samples with good recoveries, thus affirming its potential to be applied for real electro-analysis of 17β-estradiol in treated wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All manuscript data will be made available from the author upon reasonable request with permission granted by parties: Mintek and University of the Western Cape.

References

  1. Bai, J., Gao, Z., Wang, W., Peng, Y., Wu, J., Zhang, M., … Cao, G. (2021). Ultrasensitive detection of 17β-estradiol (e2) based on multistep isothermal amplification. Analytical Chemistry, 93(10), 4488–4496.https://doi.org/10.1021/acs.analchem.0c04681

  2. Dai, Y., & Liu, C. C. (2017). Detection of 17 β -Estradiol in environmental samples and for health care using a single-use , cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors, 7(15). https://doi.org/10.3390/bios7020015

  3. Saaristo, M., Craft, J. A., Lehtonen, K. K., & Lindström, K. (2010). An endocrine disrupting chemical changes courtship and parental care in the sand goby. Aquatic Toxicology, 97(4), 285–292. https://doi.org/10.1016/j.aquatox.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  4. Jensen, E. V., Jacobson, H. I., Walf, A. A., & Frye, C. A. (2010). Estrogen action: A historic perspective on the implications of considering alternative approaches. Physiology and Behavior, 99(2), 151–162. https://doi.org/10.1016/j.physbeh.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  5. Emna, D., Yahia, M. N. D., Farcy, E., Pringault, O., & Bonnet, D. (2022). Acute and chronic toxicity assessments of 17β-estradiol (E2) and 17a-ethinylestradiol on the calanoid.pdf. Science of the Total Environment Journal. https://doi.org/10.1016/j.scitotenv.2021.150845

  6. Shappell, N. W., Hyndman, K. M., Bartell, S. E., & Schoenfuss, H. L. (2010). Comparative biological effects and potency of 17α- and 17β-estradiol in fathead minnows. Aquatic Toxicology, 100(1), 1–8. https://doi.org/10.1016/j.aquatox.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Spychalska, K., Zając, D., & Cabaj, J. (2020). Electrochemical biosensor for detection of 17β-estradiol using semi-conducting polymer and horseradish peroxidase. RSC Advances, 10(15), 9079–9087. https://doi.org/10.1039/c9ra09902f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schilirò, T., Pignata, C., Rovere, R., Fea, E., & Gilli, G. (2009). The endocrine disrupting activity of surface waters and of wastewater treatment plant effluents in relation to chlorination. Chemosphere, 75(3), 335–340. https://doi.org/10.1016/j.chemosphere.2008.12.028

    Article  CAS  PubMed  Google Scholar 

  9. Chang, H. S., Choo, K. H., Lee, B., & Choi, S. J. (2009). The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. Journal of Hazardous Materials, 172(1), 1–12. https://doi.org/10.1016/j.jhazmat.2009.06.135

    Article  CAS  PubMed  Google Scholar 

  10. Alda, M. J. L., & Barcelo, D. (2000). Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography – diode array detection – mass spectrometry. Journal of Chromatography A, 892, 391–406.

    Article  Google Scholar 

  11. Guo, Y., Han, Z., Min, H., Chen, Z., Sun, T., Wang, L., … Cheng, P. (2022). Bilanthanide metal–organic frameworks for instant detection of 17β‐estradiol, a vital physiological index. Small Structures, 3(5), 2100113.https://doi.org/10.1002/sstr.202100113

  12. Wang, A., Ding, Y., Li, L., Duan, D., Mei, Q., Zhuang, Q., … He, X. (2019). A novel electrochemical enzyme biosensor for detection of 17β-estradiol by mediated electron-transfer system. Talanta, 192(September 2018), 478–485. https://doi.org/10.1016/j.talanta.2018.09.018

  13. Sesay, A. M., & Cullen, D. C. (2001). Detection of hormone mimics in water using a miniturised SPR sensor. Enviromental Monitoring and Assessment, 70, 83–92.

    Article  CAS  Google Scholar 

  14. Campbell, C. G., Borglin, S. E., Green, F. B., Grayson, A., Wozei, E., & Stringfellow, W. T. (2006). Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water : A review. Chemosphere, 65, 1265–1280. https://doi.org/10.1016/j.chemosphere.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  15. Szabó, R., Hoffmann, A., Börzsei, D., Kupai, K., Veszelka, M., Berkó, A. M., … Varga, C. (2021). Hormone replacement therapy and aging: A Potential therapeutic approach for age-related oxidative stress and cardiac remodeling. Oxidative Medicine and Cellular Longevity, 2021.https://doi.org/10.1155/2021/8364297

  16. McMenamin, Ú., Hicks, B., Hughes, C., Murchie, P., Hippisley-Cox, J., Ranger, T., … Cardwell, C. (2021). Hormone replacement therapy in women with cancer and risk of cancer-specific mortality and cardiovascular disease: a protocol for a cohort study from Scotland and Wales. BMC Cancer, 21(1), 4–9.https://doi.org/10.1186/s12885-021-08065-3

  17. Preedy, J. R. K., & Aitken, E. H. (1961). The Determination of estrone, estradiol-17β, and Estriol in urine and plasma with column partition chromatography. Journal of Biological Chemistry, 236(5), 1300–1311. https://doi.org/10.1016/S0021-9258(18)64169-9

    Article  CAS  PubMed  Google Scholar 

  18. Nili-Ahmadabadi, A., Rezaei, F., Heshmati, A., Ranjbar, A., & Larki-Harchegani, A. (2021). Steroid Hormone exposure as a potential hazard in milk consumers: A significant health challenge in Iran. Journal of Food Quality, 2021.https://doi.org/10.1155/2021/5595555

  19. Zheng, W., Yates, S. R., & Bradford, S. A. (2008). Analysis of steroid hormones in a typical dairy waste disposal system. Environmental Science and Technology, 42(2), 530–535. https://doi.org/10.1021/es071896b

    Article  CAS  PubMed  Google Scholar 

  20. Mehta, J., Kling, J. M., & Manson, J. A. E. (2021). Risks, Benefits, and treatment modalities of menopausal hormone therapy: Current concepts. Frontiers in Endocrinology, 12(March), 1–14. https://doi.org/10.3389/fendo.2021.564781

    Article  CAS  Google Scholar 

  21. Maurício, R., Dias, R., Ribeiro, V., Fernandes, S., Vicente, A. C., Pinto, M. I., … Mano, A. P. (2018). 17α-Ethinylestradiol and 17β-estradiol removal from a secondary urban wastewater using an RBC treatment system. Environmental Monitoring and Assessment.https://doi.org/10.1007/s10661-018-6701-8

  22. Esmaeeli, F., Gorbanian, S. A., & Moazezi, N. (2017). Removal of estradiol valerate and progesterone using powdered and granular activated carbon from aqueous solutions. International Journal of Environmental Research, 11(5–6), 695–705. https://doi.org/10.1007/s41742-017-0060-0

    Article  CAS  Google Scholar 

  23. Prokić, D., Vukčević, M., Mitrović, A., Maletić, M., Kalijadis, A., Janković-Častvan, I., & Đurkić, T. (2021). Adsorption of estrone, 17β-estradiol, and 17α-ethinylestradiol from water onto modified multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15970-4

    Article  PubMed  Google Scholar 

  24. Nazari, E., & Suja, F. (2016). Effects of 17β-estradiol (E2) on aqueous organisms and its treatment problem: A review. Reviews on Environmental Health, 31(4), 465–491. https://doi.org/10.1515/reveh-2016-0040

    Article  CAS  PubMed  Google Scholar 

  25. Wee, S. Y., Aris, A. Z., Yusoff, F. M., & Praveena, S. M. (2020). Occurrence of multiclass endocrine disrupting compounds in a drinking water supply system and associated risks. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-74061-5

    Article  CAS  Google Scholar 

  26. Domènech, A., Pich, S., Arís, A., Plasencia, C., Bach, A., & Serrano, A. (2011). Heat identification by 17β-estradiol and progesterone quantification in individual raw milk samples by enzyme immunoassay. Electronic Journal of Biotechnology. https://doi.org/10.2225/vol14-issue4-fulltext-6

    Article  Google Scholar 

  27. Chang, Z., Zhu, B., Liu, J. J., Zhu, X., Xu, M., & Travas-Sejdic, J. (2021). Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosensors and Bioelectronics. https://doi.org/10.1016/j.bios.2021.113247

    Article  PubMed  Google Scholar 

  28. Rozi, N., Hanifah, S. A., Zaid, M. H. M., Abd Karim, N. H., & Ikeda, M. (2021). Feasible study on poly(pyrrole-co-pyrrole-3-carboxylic acid)-modified electrode for detection of 17β-estradiol. Chemical Papers, 75(7), 3493–3503. https://doi.org/10.1007/s11696-021-01597-9

    Article  CAS  Google Scholar 

  29. Sharma, V., & Mehata, M. S. (2021). Synthesis of photoactivated highly fluorescent Mn2+-doped ZnSe quantum dots as effective lead sensor in drinking water. Materials Research Bulletin, 134(October 2020), 1–8. https://doi.org/10.1016/j.materresbull.2020.111121

  30. Park, J. Y., Jeon, E. J., Choa, Y. H., & Kim, B. S. (2019). Optical and structural properties of ZnSe quantum dot with europium. Journal of Luminescence, 208(June 2018), 145–149. https://doi.org/10.1016/j.jlumin.2018.12.018

  31. Sharma, K., Raizada, P., Hasija, V., Singh, P., & Bajpai, A. (2021). ZnS-based quantum dots as photocatalysts for water purification Journal of Water Process Engineering ZnS-based quantum dots as photocatalysts for water purification. Journal of Water Process Engineering, 43(July), 102217. Retrieved from https://doi.org/10.1016/j.jwpe.2021.102217

  32. Stavrou, J. Y. H. E.-V. N. (2018). Biomolecule-conjugated quantum dot nanosensors as probes for cellular dynamic events in living cells (p. Ch. 7). Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.72858

  33. Suo, B., Su, X., Wu, J., Chen, D., Wang, A., & Guo, Z. (2010). Poly (vinyl alcohol ) thin film filled with CdSe – ZnS quantum dots : Fabrication, characterization and optical properties. Materials Chemistry and Physics, 119, 237–242. https://doi.org/10.1016/j.matchemphys.2009.08.054

    Article  CAS  Google Scholar 

  34. Wood, V., Chen, J., Panzer, M. J., Bradley, M. S., Halpert, J. E., Bawendi, M. G., & Bulović, V. (2008). Inkjet-printed quantum dot and polymer composites for AC-driven electroluminescent devices. Advanced Materials, 115, 8715.

    Google Scholar 

  35. Chen, H., Huang, H., & Chen, C. (2004). Quantum Dots / Conductive Polymer Nanocomposite. NSTI-Nanotech, 3, 34–36.

    CAS  Google Scholar 

  36. Fogg, D. E., Radzilowski, L. H., Blanski, R., Schrock, R. R., & Thomas, E. L. (1997). Fabrication of quantum dot/polymer composites phosphine-functionalized block copolymers as passivating hosts for cadmium selenide nanoclusters. Macromolecules, 30, 417–426.

    Article  CAS  Google Scholar 

  37. Rafeeq, S. N., & Khalaf, W. Z. (2015). Preparation, characterization and electrical conductivity of doped polyaniline with (HCL and P - TSA). Eng & Tech.Journal, 33(7).

  38. Neelgund, G. M., & Oki, A. (2012). A facile method for synthesis of polyaniline nanospheres and effect of doping on their electrical conductivity. Polymer International, 60(9), 1291–1295. https://doi.org/10.1002/pi.3068.A

    Article  Google Scholar 

  39. Wang, H., Lin, J., & Xiang, Z. (2016). Advanced materials and devices polyaniline ( PANi ) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices, 1(3), 225–255. https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  40. Srinivas, C. H., Srinivasu, D., Kavitha, B., Narsimlu, N., & Kumar, K. S. (2012). Synthesis and characterization of nano size conducting polyaniline. Journal of Applied Physics, 1(5), 12–15.

    Google Scholar 

  41. Deshpande, N., Chakane, S., & Borude, R. R. (2016). Synthesis and characterization of polyaniline, using different dopant, for sensing application of pollutant gases. Journal of Atomic, Molecular, Condensate & Nano Physics, 3(1), 27–33.

    Article  Google Scholar 

  42. Alice, M., Mazzeu, C., Faria, L. K., Cardoso, A. D. M., Gama, M., Baldan, M. R., & Gonçalves, E. S. (2017). Structural and morphological characteristics of polyaniline synthesized in pilot scale. Journal of Aerospace Technology and Management, 9, 39–47. https://doi.org/10.5028/jatm.v9i1.726

    Article  CAS  Google Scholar 

  43. Bhadra, S., Khastgir, D., Singha, N. K., & Hee, J. (2009). Progress in polymer science progress in preparation, processing and applications of polyaniline. Progress i Polymer Science, 34, 783–810. https://doi.org/10.1016/j.progpolymsci.2009.04.003

    Article  CAS  Google Scholar 

  44. Zhang, G., Li, X., Jia, H., Pang, X., Yang, H., Wang, Y., & Ding, K. (2012). Preparation and characterization of polyaniline ( PANI ) doped- Li3V2(PO4)3. International Journal of Electrochemical Science, 7, 830–843.

    CAS  Google Scholar 

  45. Krainer, F. W., & Glieder, A. (2015). An updated view on horseradish peroxidases: Recombinant production and biotechnological applications. Applied Microbiology and Biotechnology, 99(4), 1611–1625. https://doi.org/10.1007/s00253-014-6346-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Visser, S. P., Shaik, S., Sharma, P. K., Kumar, D., & Thiel, W. (2003). Active species of horseradish peroxidase (HRP) and cytochrome p450: Two electronic chameleons. Journal of the American Chemical Society, 125(51), 15779–15788. https://doi.org/10.1021/ja0380906

    Article  CAS  PubMed  Google Scholar 

  47. Sevrioukova, I. F., & Poulosa, T. L. (2013). Understanding the mechanism of cytochrome p450:Recent advances and remaining problemS. Dalton Transactions, 42(9), 3116–3126. https://doi.org/10.1039/c2dt31833d.UNDERSTANDING

    Article  CAS  PubMed  Google Scholar 

  48. Stavropoulou, E., Pircalabioru, G. G., & Bezirtzoglou, E. (2018). The role of cytochromes P450 in infection. Frontiers in Immunology, 9(JAN), 1–7. https://doi.org/10.3389/fimmu.2018.00089

  49. Ahirwal, G. K., & Mitra, C. K. (2009). Direct electrochemistry of horseradish peroxidase-gold nanoparticles conjugate. Sensors (Basel, Switzerland), 9(2), 881–894. https://doi.org/10.3390/s90200881

    Article  CAS  PubMed  Google Scholar 

  50. Vlasova, I. I. (2018). Peroxidase activity of human hemoproteins: Keeping the fire under control. Molecules, 23(10), 1–27. https://doi.org/10.3390/molecules23102561

    Article  CAS  Google Scholar 

  51. Esteves, F., Rueff, J., & Kranendonk, M. (2021). The central role of cytochrome P450 in Xenobiotic metabolism—a brief review on a fascinating enzyme family. Journal of Xenobiotics, 11(3), 94–114. https://doi.org/10.3390/jox11030007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Oliveira, F. K., Santos, L. O., & Buffon, J. G. (2021). Mechanism of action, sources, and application of peroxidases. Food Research International, 143(October 2020). https://doi.org/10.1016/j.foodres.2021.110266

  53. Xu, R., Chi, C., Li, F., & Zhang, B. (2013). Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. Bioresource Technology, 149, 111–116. https://doi.org/10.1016/j.biortech.2013.09.030

    Article  CAS  PubMed  Google Scholar 

  54. Nunavath, H., Banoth, C., Talluri, V. R., & Bhukya, B. (2016). An analysis of horseradish peroxidase enzyme for effluent treatment. Bioinformation, 12(06), 318–323. https://doi.org/10.6026/97320630012318

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zuccarello, L., Barbosa, C., Todorovic, S., & Silveira, C. M. (2021). Electrocatalysis by heme enzymes—applications in biosensing. Catalysts, 11(2), 1–44. https://doi.org/10.3390/catal11020218

    Article  CAS  Google Scholar 

  56. Guo, Y., & Guadalupe, A. R. (1997). Direct electrochemistry of horseradish peroxidase adsorbed on glassy carbon electrode from organic solutions. Chemical Communications, 15, 1437–1438. https://doi.org/10.1039/A703254D

    Article  Google Scholar 

  57. Vineh, M. B., Saboury, A. A., Poostchi, A. A., & Ghasemi, A. (2020). Biodegradation of phenol and dyes with horseradish peroxidase covalently immobilized on functionalized RGO-SiO2 nanocomposite. International Journal of Biological Macromolecules, 164, 4403–4414. https://doi.org/10.1016/j.ijbiomac.2020.09.045

    Article  CAS  PubMed  Google Scholar 

  58. Naveen, M. H., Gurudatt, N. G., & Shim, Y. B. (2017). Applications of conducting polymer composites to electrochemical sensors: A review. Applied Materials Today, 9, 419–433. https://doi.org/10.1016/j.apmt.2017.09.001

    Article  Google Scholar 

  59. Mohamad Ahad, I. Z., Wadi Harun, S., Gan, S. N., & Phang, S. W. (2018). Polyaniline (PAni) optical sensor in chloroform detection. Sensors and Actuators, B: Chemical, 261, 97–105. https://doi.org/10.1016/j.snb.2018.01.082

    Article  CAS  Google Scholar 

  60. Hiragond, C. B., Khanna, P. K., & More, P. V. (2018). Probing the real-time photocatalytic activity of CdS QDs sensitized conducting polymers: Featured PTh, PPy and PANI. Vacuum, 155, 159–168. https://doi.org/10.1016/j.vacuum.2018.06.009

    Article  CAS  Google Scholar 

  61. Baruah, J. M., Kalita, S., & Narayan, J. (2019). Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): Their application as potential thin films and antibacterial agent. International Nano Letters, 9(2), 149–159. https://doi.org/10.1007/s40089-019-0270-x

    Article  CAS  Google Scholar 

  62. Memon, U. B., Chatterjee, U., Gandhi, M. N., Tiwari, S., & Duttagupta, S. P. (2014). Synthesis of ZnSe quantum dots with stoichiometric ratio difference and study of its optoelectronic property. Procedia Materials Science, 5, 1027–1033. https://doi.org/10.1016/j.mspro.2014.07.393

    Article  CAS  Google Scholar 

  63. Shen, F., Que, W., Liao, Y., & Yin, X. (2011). Photocatalytic activity of TiO2 nanoparticles sensitized by CuInS 2 quantum dots. Industrial & Engineering Chemistry Research, 50(15), 9131–9137. https://doi.org/10.1021/ie2007467

    Article  CAS  Google Scholar 

  64. Senthilkumar, K., Kalaivani, T., Kanagesan, S., Balasubramanian, V., & Balakrishnan, J. (2013). Wurtzite ZnSe quantum dots: Synthesis, characterization and PL properties. Journal of Materials Science: Materials in Electronics, 24(2), 692–696. https://doi.org/10.1007/s10854-012-0796-4

    Article  CAS  Google Scholar 

  65. Yang, Z., & Chang, H.-T. (2010). CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%. Solar Energy Materials and Solar Cells, 94(12), 2046–2051. https://doi.org/10.1016/j.solmat.2010.06.013

    Article  CAS  Google Scholar 

  66. Korlann, S. D., Riley, A. E., Kirsch, B. L., Mun, B. S., & Tolbert, S. H. (2005). Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor. Journal of the American Chemical Society, 127(36), 12516–12527. https://doi.org/10.1021/ja045446k

    Article  CAS  PubMed  Google Scholar 

  67. Ma, Y., Fan, G.-C., Cui, M., Gu, S., Liu, Q., & Luo, X. (2019). Novel cathodic photoelectrochemical immnuosensor with high sensitivity based on 3D AuNPs/ZnO/Cu2O heterojunction nanowires. Electrochimica Acta, 318, 100–107. https://doi.org/10.1016/j.electacta.2019.05.160

    Article  CAS  Google Scholar 

  68. Ndangili, P. M., Arotiba, O. A., Baker, P. G. L., & Iwuoha, E. I. (2010). A potential masking approach in the detection of dopamine on 3-mercaptopropionic acid capped ZnSe quantum dots modified gold electrode in the presence of interferences. Journal of Electroanalytical Chemistry, 643(1–2), 77–81. https://doi.org/10.1016/j.jelechem.2010.03.006

    Article  CAS  Google Scholar 

  69. Karimi, A., Mahdizadeh, F., Salari, D., Vahabzadeh, F., & Khataee, A. (2012). Enzymatic scavenging of oxygen dissolved in water: Application of response surface methodology in optimization of conditionS In. Chemical Industry and Chemical Engineering Quarterly, 18(3), 431–439. https://doi.org/10.2298/CICEQ110823020K

    Article  CAS  Google Scholar 

  70. Silverstein, T. P., & Goodney, D. E. (2010). Enzyme-linked biosensors: Michaelis-Menten kinetics need not apply. Journal of Chemical Education, 87(9), 905–907. https://doi.org/10.1021/ed100381r

    Article  CAS  Google Scholar 

  71. Al-ahmed, A., Ndangili, P. M., Jahed, N., Baker, P. G. L., & Iwuoha, E. I. (2009). Polyester Sulphonic acid interstitial nanocomposite platform for peroxide biosensor. Sensors, 9, 9965–9976. https://doi.org/10.3390/s91209965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fersht, A. (1985). Enzyme Structure and Mechanism, Second Edition. W.H Freman and Company.

  73. Walsh, C. (1979). Enzyme reaction mechanism. W.H Freman and Company.

  74. Yang, H., & Xu, D. (2022). Highly-sensitive and simple fluorescent aptasensor for 17 b-estradiol detection coupled with HCR-HRP structure. Talanta, 240(November 2021). https://doi.org/10.1016/j.talanta.2021.123094

  75. Yilmaz, B., & Kadioglu, Y. (2017). Determination of 17 β-estradiol in pharmaceutical preparation by UV spectrophotometry and high performance liquid chromatography methods. Arabian Journal of Chemistry, 10, S1422–S1428. https://doi.org/10.1016/j.arabjc.2013.04.018

    Article  CAS  Google Scholar 

  76. Veitch, N. C. (2004). Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry, 65(3), 249–259. https://doi.org/10.1016/j.phytochem.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  77. Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., & Dwivedi, U. N. (2017). A Comprehensive review on function and application of plant peroxidases. Biochemistry & Analytical Biochemistry, 06(01), 1–16. https://doi.org/10.4172/2161-1009.1000308

    Article  CAS  Google Scholar 

  78. Wang, F., Zhang, L., Wei, L., & Van Der Hoek, J. P. (2021). Removal of hydrogen peroxide residuals and by-product bromate from advanced oxidation processes by granular activated carbon. Water, 13(18). https://doi.org/10.3390/w13182460

  79. Wu, T., & Englehardt, J. D. (2012). A New method for removal of hydrogen Peroxide Interference in the Analysis of Chemical Oxygen Demand. Environmental Science & Technology, 46(4), 2291–2298. https://doi.org/10.1021/es204250k

    Article  CAS  Google Scholar 

  80. Lee, Y.-M., Kwon, O.-Y., Yoon, Y.-J., & Ryu, K. (2006). Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Biotechnology Letters, 28(1), 39–43. https://doi.org/10.1007/s10529-005-9685-8

    Article  CAS  PubMed  Google Scholar 

  81. Veitch, N. (2004). Veitch, N. C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 65, 249–259. Phytochemistry, 65, 249–259. https://doi.org/10.1016/j.phytochem.2003.10.022

    Article  CAS  PubMed  Google Scholar 

  82. Lee, A.-C., Liu, G., Heng, C.-K., Tan, S.-N., Lim, T.-M., & Lin, Y. (2008). Sensitive electrochemical detection of horseradish peroxidase at disposable screen-printed carbon electrode. Electroanalysis, 20(18), 2040. https://doi.org/10.1002/elan.200804287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khanmohammadi, M., Dastjerdi, M. B., Ai, A., Ahmadi, A., Godarzi, A., Rahimi, A., & Ai, J. (2018). Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomaterials Science, 6(6), 1286–1298. https://doi.org/10.1039/c8bm00056e

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research project was fully funded by the Department of science technology (DST) of South Africa through the National Research Foundation (NRF) funding mechanism.

Author information

Authors and Affiliations

Authors

Contributions

Abongile Jijana–conceptualization, assimilation of the presented data, and preparation of the manuscript.

Corresponding author

Correspondence to Abongile Nwabisa Jijana.

Ethics declarations

Ethics Approval

No ethical clearance was required during for his research, as the study does not use any human or animal derived material or samples.

Consent to Participate

All authors of this manuscript granted consent to partake in the research undertaken.

Consent to Publish

All authors of the manuscript herein listed, gave consent to publish the presented data including all figures and supplementary material.

Competing Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 489 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jijana, A.N. Polyaniline Entrapped Water-Dispersible 3MPA-ZnSe Quantum Dots and Their Application for the Development of an Enzymatic Electrochemical Nanobiosensor for the Detection of 17β-Estradiol, an Endocrine-Disrupting Compound. Appl Biochem Biotechnol 195, 3425–3455 (2023). https://doi.org/10.1007/s12010-022-04277-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04277-w

Keywords

Navigation