Skip to main content

Advertisement

Log in

Artabotrys odoratissimus Bark Extract Restores Ethanol Induced Redox Imbalance and Toxicity in Hepatocytes and In Vivo Model

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alcohol-induced oxidative stress is a key player in the development of liver diseases, and herbal alternatives are important means of ameliorating the hepatotoxic effects. The study aimed to evaluate the hepatoprotective potentiality of Artabotrys odoratissimus, an important medicinal shrub from the family Annonaceae. The phenolic compounds from bark ethanol extract (BEE) were detected using RP-HPLC. The in vitro hepatoprotective activity against ethanol-induced damage was studied in HepG2 cells with cell viability assays, mitochondrial membrane potential (MMP) assay, reactive oxygen species (ROS) assay, double staining assay and western blotting. The in vivo mice model was used to evaluate the alcohol-induced stress with liver function enzymes, lipid profile and histopathology. All the thirteen phenolic compounds detected with HPLC were docked onto protein targets such as aspartate amino transferase (AST), alkaline phosphatase (ALP) and inducible nitric oxide synthase (NO). The RP-HPLC detected the presence of various phenolics including rutin, chlorogenic acid and catechin, amongst others. Co-administration of BEE with ethanol alleviated cell death, ROS and MMP in HepG2 cells compared to the negative control. The extract also modulated the MAP kinase/caspase-3 pathway, thereby showing protective effects in HepG2 cells. Also, pre-treatment for 14 days with the extract in the mice model before a single toxic dose (5 g/kg body weight) reduced the liver injury by bringing the levels of liver function enzymes, lipid profile and bilirubin to near normal. In silico analysis revealed that rutin showed the best binding affinity with all the target proteins in the study. These results provide evidence that BEE possesses significant hepatoprotective effects against ethanol-induced oxidative stress in hepatic cells and in vivo models, which is further validated with in silico analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study will be made available on request from the corresponding author.

References

  1. de Groot, A. C., & Schmidt, E. (2017). Essential oils, part VI: Sandalwood oil, ylang-ylang oil, and jasmine absolute. Dermatitis, 28(1), 14–21.

    Article  PubMed  Google Scholar 

  2. Kirtikar, K.R. and Basu, B.D. (1918). Indian medicinal plants. Indian Medicinal Plants. (Vol. 1–4), 2nd ed.; Bishen Singh Mahendrapal Singh: Delhi, India, 1991; p. 2971.

  3. Geetha, M., Shankar, M. B., Mehta, R. S., & Saluja, A. K. (2005). Antifertility activity of Artabotrys odoratissimus Roxb. and Couroupita guianensis Aubl. Journal of Natural Remedies, 2, 121–125.

    Google Scholar 

  4. Srivastava, B., Singh, P., Srivastava, A. K., Shukla, R., & Dubey, N. K. (2009). Efficacy of Artabotrys odoratissimus oil as a plant based antimicrobial against storage fungi and aflatoxin B1 secretion. International Journal of Food Science & Technology, 44(10), 1909–1915.

    Article  CAS  Google Scholar 

  5. Pargi, M., Jain Raviraj, S. K., Narayanappa, P., & Malleshappa Honnenahally, K. (2020). Phytochemical profiling and screening of protective effects of Artabotrys odoratissimus on H2O2 induced oxidative stress in HEK-293 cells and erythrocytes. Botany Letters, 167(4), 471–484.

    Article  CAS  Google Scholar 

  6. Tan, H. K., Yates, E., Lilly, K., & Dhanda, A. D. (2020). Oxidative stress in alcohol-related liver disease. World Journal of Hepatology, 12(7), 332.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mankulangara, M. K., & Ramachandran, T. M. (2017). A comparative study of caregiver burden in alcoholic liver disease and nonalcoholic fatty liver disease. Journal of Clinical and Experimental Hepatology, 7, S66–S67.

    Article  Google Scholar 

  8. Choi, B. R., Cho, I. J., Jung, S. J., Kim, J. K., Park, S. M., Lee, D. G., Ku, S. K., & Park, K. M. (2020). Lemon balm and dandelion leaf extract synergistically alleviate ethanol-induced hepatotoxicity by enhancing antioxidant and anti-inflammatory activity. Journal of Food Biochemistry, 44(8), e13232.

    Article  CAS  PubMed  Google Scholar 

  9. Crabb, D. W., Im, G. Y., Szabo, G., Mellinger, J. L., & Lucey, M. R. (2020). Diagnosis and treatment of alcohol-associated liver diseases: 2019 practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 71(1), 306–333.

    Article  PubMed  Google Scholar 

  10. Wang, G., Fu, Y., Li, J., Li, Y., Zhao, Q., Hu, A., Xu, C., Shao, D., & Chen, W. (2021). Aqueous extract of Polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the Nrf2/ARE pathway. Journal of Food Biochemistry, 45(1), e13537.

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava, A., & Shivanandappa, T. (2006). Hepatoprotective effect of the aqueous extract of the roots of Decalepis hamiltonii against ethanol-induced oxidative stress in rats. Hepatology Research, 35(4), 267–275.

    Article  PubMed  Google Scholar 

  12. Singal, A. K., & Shah, V. H. (2019). Current trials and novel therapeutic targets for alcoholic hepatitis. Journal of Hepatology, 70(2), 305–313.

    Article  PubMed  Google Scholar 

  13. Sharma, B., & Kumar, S. U. (2010). Hepatoprotective activity of some indigenous plants. International Journal of Pharmtech Research, 2(1), 568–572.

    Google Scholar 

  14. Ogunleye, G. S., Fagbohun, O. F., & Babalola, O. O. (2020). Chenopodium ambrosioides var ambrosioides leaf extracts possess regenerative and ameliorative effects against mercury-induced hepatotoxicity and nephrotoxicity. Industrial Crops and Products, 154, 112723.

    Article  CAS  Google Scholar 

  15. Kshirsagar, A. D., Mohite, R., Aggrawal, A. S., & Suralkar, U. R. (2011). Hepatoprotective medicinal plants of Ayurveda – A review. Asian Journal of Pharmaceutical and Clinical Research, 4(3), 1–8.

    Google Scholar 

  16. Sabitha, R., Nishi, K., Gunasekaran, V. P., Agilan, B., David, E., Annamalai, G., Vinothkumar, R., Perumal, M., Subbiah, L., & Ganeshan, M. (2020). p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models. Chemico-biological Interactions, 321, 109044.

    Article  CAS  PubMed  Google Scholar 

  17. Sahu, R., Dua, T. K., Das, S., De Feo, V., & Dewanjee, S. (2019). Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food and Chemical Toxicology, 125, 503–519.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, J. G., Kan, Y. J., Wu, Y. B., Yi, J., Chen, T. Q., & Wu, J. Z. (2016). Hepatoprotective effect of Ganoderma triterpenoids against oxidative damage induced by tert-butyl hydroperoxide in human hepatic HepG2 cells. Pharmaceutical Biology, 54(5), 919–929.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J., Yang, J., Jeon, J., Jeong, H. S., Lee, J., & Sung, J. (2018). Hepatoprotective effect of esculetin on ethanol-induced liver injury in human HepG2 cells and C57BL/6J mice. Journal of Functional Foods, 40, 536–543.

    Article  CAS  Google Scholar 

  20. Burin, V. M., Arcari, S. G., Bordignon-Luiz, A. M. T., & Costa, L. L. F. (2011). Determination of some phenolic compounds in red wine by RP-HPLC: Method development and validation. Journal of Chromatographic Science, 49(8), 647–651.

    Article  CAS  PubMed  Google Scholar 

  21. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

    Article  CAS  PubMed  Google Scholar 

  22. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. (2006). Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols, 2006(3), pdb-rot4493.

  23. LeBel, C. P., Ischiropoulos, H., & Bondy, S. C. (1992). Evaluation of the probe 2’, 7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology, 5(2), 227–231.

    Article  CAS  PubMed  Google Scholar 

  24. Awasthi, K. K., Awasthi, A., Verma, R., Kumar, N., Roy, P., Awasthi, K., & John, P. J. (2015). Cytotoxicity, genotoxicity and alteration of cellular antioxidant enzymes in silver nanoparticles exposed CHO cells. RSC Advances, 5(44), 34927–34935.

    Article  CAS  Google Scholar 

  25. Srivastava, A. (2006). Antioxidant properties and chemopreventive potential of the bioactive constituents of the roots of Decalepis hamiltonii (doctoral dissertation, Central Food Technological Research Institute).

  26. Bolton, E. E., Wang, Y., Thiessen, P. A., & Bryant, S. H. (2008). PubChem: Integrated platform of small molecules and biological activities. In Annual Reports in Computational Chemistry, 4, 217–241. Elsevier.

    Article  CAS  Google Scholar 

  27. Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355–1363.

    Article  PubMed  Google Scholar 

  28. Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Humana Press.

  29. Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10(12), 980–980.

    Article  CAS  Google Scholar 

  30. Garcin, E. D., Arvai, A. S., Rosenfeld, R. J., Kroeger, M. D., Crane, B. R., Andersson, G., Andrews, G., Hamley, P. J., Mallinder, P. R., Nicholls, D. J., & St-Gallay, S. A. (2008). Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nature Chemical Biology, 4(11), 700–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McPhalen, C. A., Vincent, M. G., & Jansonius, J. N. (1992). X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. Journal of Molecular Biology, 225(2), 495–517.

    Article  CAS  PubMed  Google Scholar 

  32. Ghosh, K., Tagore, D. M., Anumula, R., Lakshmaiah, B., Kumar, P. P. B. S., Singaram, S., Matan, T., Kallipatti, S., Selvam, S., Krishnamurthy, P., & Ramarao, M. (2013). Crystal structure of rat intestinal alkaline phosphatase–role of crown domain in mammalian alkaline phosphatases. Journal of Structural Biology, 184(2), 182–192.

    Article  CAS  PubMed  Google Scholar 

  33. Laskowski, R.A. & Swindells, M.B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. (2011), 2778–2786.

  34. DeLano WL (2002) Pymol An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40(1) 82–92

  35. Saha, P., Talukdar, A. D., Nath, R., Sarker, S. D., Nahar, L., Sahu, J., & Choudhury, M. D. (2019). Role of natural phenolics in hepatoprotection: A mechanistic review and analysis of regulatory network of associated genes. Frontiers in Pharmacology, 10, 509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, S., Lee, J., Lee, H., & Sung, J. (2019). Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. Journal of Food Biochemistry, 43(11), e13002.

    Article  PubMed  Google Scholar 

  37. Eruslanov, E. and Kusmartsev, S. (2010). Identification of ROS using oxidized DCFDA and flow-cytometry. In Advanced protocols in oxidative stress II (pp. 57–72). Humana Press.

  38. Balasubramaniyan, V., Shukla, R., Murugaiyan, G., Bhonde, R. R., & Nalini, N. (2007). Mouse recombinant leptin protects human hepatoma HepG2 against apoptosis, TNF-α response and oxidative stress induced by the hepatotoxin–ethanol. Biochimica et Biophysica Acta (BBA)-General Subjects, 1770(8), 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  39. Herath, K. H. I. N. M., Bing, S. J., Cho, J., Kim, A., Kim, G., Kim, J. S., Kim, J. B., Doh, Y. H., & Jee, Y. (2018). Sasa quelpaertensis leaves ameliorate alcohol-induced liver injury by attenuating oxidative stress in HepG2 cells and mice. Acta Histochemica, 120(5), 477–489.

    Article  Google Scholar 

  40. Heaton, M. B., Paiva, M., & Siler-Marsiglio, K. (2011). Ethanol influences on Bax translocation, mitochondrial membrane potential, and reactive oxygen species generation are modulated by vitamin E and brain-derived neurotrophic factor. Alcoholism: Clinical and Experimental Research, 35(6), 1122–1133.

    Article  CAS  PubMed  Google Scholar 

  41. Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nature Reviews Molecular Cell Biology, 15(1), 49–63.

    Article  CAS  PubMed  Google Scholar 

  42. Cagnol, S., & Chambard, J. C. (2010). ERK and cell death: Mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. The FEBS Journal, 277(1), 2–21.

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu, T., Nakazato, T., Xian, M. J., Sagawa, M., Ikeda, Y., & Kizaki, M. (2006). Resveratrol induces apoptosis of human malignant B cells by activation of caspase-3 and p38 MAP kinase pathways. Biochemical Pharmacology, 71(6), 742–750.

    Article  CAS  PubMed  Google Scholar 

  44. Akanda, M.R., Kim, I.S., Ahn, D., Tae, H.J., Tian, W., Nam, H.H., Choo, B.K. and Park, B.Y. (2017). In vivo and in vitro hepatoprotective effects of Geranium koreanum methanolic extract via downregulation of MAPK/caspase-3 pathway. Evidence-Based Complementary and Alternative Medicine, 2017.

  45. Zhao, M., Howard, E. W., Guo, Z., Parris, A. B., & Yang, X. (2017). p53 pathway determines the cellular response to alcohol-induced DNA damage in MCF-7 breast cancer cells. PLoS One, 12(4), e0175121.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Airaodion, A. I., Ogbuagu, E. O., Ekenjoku, J. A., Ogbuagu, U., & Airaodion, E. O. (2019). Therapeutic effect of methanolic extract of Telfairia occidentalis leaves against acute ethanol-induced oxidative stress in Wistar rats. International Journal of Bio-Science and Bio-Technology, 11(7), 179–189.

    Google Scholar 

  47. Dey, A., & Cederbaum, A. I. (2006). Alcohol and oxidative liver injury. Hepatology, 43(S1), S63–S74.

    Article  CAS  PubMed  Google Scholar 

  48. You, M., & Arteel, G. E. (2019). Effect of ethanol on lipid metabolism. Journal of Hepatology, 70(2), 237–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muriel, P. (2009). Role of free radicals in liver diseases. Hepatology International, 3(4), 526–536.

    Article  PubMed  PubMed Central  Google Scholar 

  50. El-Hadary, A. E., & Ramadan, M. F. (2019). Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract. Journal of Food Biochemistry, 43(4), e12803.

    Article  PubMed  Google Scholar 

  51. Suresh, K., Ahad, H.A. and Satyanarayana, S.V. (2020). Evaluation of hepatoprotective and antioxidant activity of ethanolic extract of Artabotrys zeylanicus stem against various hepatotoxins induced hepatotoxicity in albino Wister rats. Journal of Pharmaceutical Research International, 25–37.5

  52. Naji, K. M., Al-Shaibani, E. S., Alhadi, F. A., & D’souza, M. R. (2017). Hepatoprotective and antioxidant effects of single clove garlic against CCl 4-induced hepatic damage in rabbits. BMC Complementary and Alternative Medicine, 17(1), 1–12.

    Article  Google Scholar 

  53. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-aided Drug Design, 7(2), 146–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lowe, D., Sanvictores, T. and John, S. (2017). Alkaline phosphatase.

  55. Huang, G. J., Deng, J. S., Huang, S. S., Lee, C. Y., Hou, W. C., Wang, S. Y., Sung, P. J., & Kuo, Y. H. (2013). Hepatoprotective effects of eburicoic acid and dehydroeburicoic acid from Antrodia camphorata in a mouse model of acute hepatic injury. Food Chemistry, 141(3), 3020–3027.

    Article  CAS  PubMed  Google Scholar 

  56. Kaibori M, Okumura T, Sato K, Nishizawa M and Kon M (2015) Inducible nitric oxide synthase expression in liver injury: Liver protective effects on primary rat hepatocytes. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued) 14(2) 77–83.

  57. Lee, C. C., Shen, S. R., Lai, Y. J., & Wu, S. C. (2013). Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food & Function, 4(5), 794–802.

    Article  CAS  Google Scholar 

  58. Shenbagam, M., & Nalini, N. (2011). Dose response effect of rutin a dietary antioxidant on alcohol-induced prooxidant and antioxidant imbalance–A histopathologic study. Fundamental & Clinical Pharmacology, 25(4), 493–502.

    Article  CAS  Google Scholar 

  59. Kim, H., Pan, J. H., Kim, S. H., Lee, J. H., & Park, J. W. (2018). Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species. Biochimie, 150, 131–138.

    Article  CAS  PubMed  Google Scholar 

  60. Domitrović, R., Jakovac, H., Marchesi, V. V., Vladimir-Knežević, S., Cvijanović, O., Tadić, Ž, Romić, Ž, & Rahelić, D. (2012). Differential hepatoprotective mechanisms of rutin and quercetin in CCl 4-intoxicated BALB/cN mice. Acta Pharmacologica Sinica, 33(10), 1260–1270.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Miltonprabu, S., Tomczyk, M., Skalicka-Woźniak, K., Rastrelli, L., Daglia, M., Nabavi, S. F., Alavian, S. M., & Nabavi, S. M. (2017). Hepatoprotective effect of quercetin: From chemistry to medicine. Food and Chemical Toxicology, 108, 365–374.

    Article  CAS  PubMed  Google Scholar 

  62. Iio, M., Ushijima, K., Fujita, M., Matsuura, M. and Miyatake, S. (1980). Effect of flavonoids on alkaline phosphatase. Journal of the Agricultural Chemical Society of Japan.

  63. Zareei, S., Boojar, M. M., & Amanlou, M. (2017). Inhibition of liver alanine aminotransferase and aspartate aminotransferase by hesperidin and its aglycone hesperetin: An in vitro and in silico study. Life Sciences, 178, 49–55.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, L., Zhang, N., Yang, D., Yang, M., Guo, X., He, J., Wu, W., Ji, B., Cheng, Q., & Zhou, F. (2018). Protective effects of five structurally diverse flavonoid subgroups against chronic alcohol-induced hepatic damage in a mouse model. Nutrients, 10(11), 1754.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Meghana P: methodology, investigation, formal analysis, writing – original draft, review and editing. Sandeep Kumar Jain R: methodology, investigation, writing – review and editing. Prashanth N: investigation, formal analysis, writing – review and editing. Santhosh J U: formal analysis, writing – original draft, review and editing. Sharath R: formal analysis, writing – original draft, review and editing. Satyanarayan N D: methodology, supervision, formal analysis. Rajesh R: conceptualization, methodology, supervision. Inchara Moodbagil C: writing – original draft, review and editing. Kumaraswamy H M: conceptualization, methodology, supervision, formal analysis, writing – review and editing.

Corresponding author

Correspondence to Kumaraswamy H M.

Ethics declarations

Ethics Approval

The study was designed according to OECD Test Guidelines 425 permitted by Institutional Ethics Committee (IEAC), Approval No. LBPL-IEAC-067–05/2020.

Consent to Participate

The study did not involve any human participants.

Consent for Publication

The authors affirm that the study does not include any participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 570 KB)

Supplementary file2 (DOCX 40 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P, M., R, S.K.J., N, P. et al. Artabotrys odoratissimus Bark Extract Restores Ethanol Induced Redox Imbalance and Toxicity in Hepatocytes and In Vivo Model. Appl Biochem Biotechnol 195, 3366–3383 (2023). https://doi.org/10.1007/s12010-022-04275-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04275-y

Keywords

Navigation