Skip to main content

Advertisement

Log in

Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cancer progression is closely linked to oxidative stress (OS) inflammation. OS is caused by an imbalance between the amount of reactive oxygen species produced and antioxidants present in the body. Excess ROS either oxidizes biomolecules or activates the signaling cascade, resulting in inflammation. Immune cells secrete cytokines and chemokines when inflammation is activated. These signaling molecules attract a wide range of immune cells to the site of infection or oxidative stress. Similarly, increased ROS production by immune cells at the inflamed site causes oxidative stress in the affected area. A review on the role of oxidative stress and inflammation in cancer-related literature was conducted to obtain data. All of the information gathered was focused on the current state of oxidative stress and inflammation in various cancers. After gathering all relevant information, a narrative review was created to provide a detailed note on oxidative stress and inflammation in cancer. Proliferation, differentiation, angiogenesis, migration, invasion, metabolic changes, and evasion of programmed cell death are all aided by OS and inflammation in cancer. Imbalance between reactive oxygen species (ROS) and antioxidants lead to oxidative stress that damages macromolecules (nucleic acids, lipids and proteins). It causes breakdown of the biological signaling cascade. Prolonged oxidative stress causes inflammation by activating transcription factors (NF-κB, p53, HIF-1α, PPAR-γ, Nrf2, AP-1) that alter the expression of many other genes and proteins, including growth factors, tumor-suppressor genes, oncogenes, and pro-inflammatory cytokines, resulting in cancer cell survival. The present review article examines the complex relationship between OS and inflammation in certain types of cancer (colorectal, breast, lung, bladder, and gastric cancer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11, 85–95.

    Article  CAS  PubMed  Google Scholar 

  2. Wu, W. S. (2006). The signaling mechanism of ROS in tumor progression. Cancer and Metastasis Reviews, 25(4), 695–705.

    Article  CAS  PubMed  Google Scholar 

  3. Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondah, H., & Lleonart, M. E. (2012). Oxidative stress and cancer: An overview. Aging Research Reviews, 12(1), 376–390.

  4. Reuter, S., Gupta, C. S., Chaturvedi, M. M., & Agarwal, B. B. (2010). Oxidative stress, inflammation and cancer: How they are linked? Free Radical Biology & Medicine, 49(11), 1603–1616.

    Article  CAS  Google Scholar 

  5. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., & Rahu, N. (2016). Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity, 2016, 7432797. https://doi.org/10.1155/2016/7432797

  6. Sabharwal, S. S., & Schumacker, P. T. (2014). Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nature Reviews Cancer, 14, 709–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74.

    Article  CAS  PubMed  Google Scholar 

  8. Simic, M. G., Bergtold, D. S., & Karam, L. R. (1989). Generation of oxyradicals in biosystems. Mutation Research, 214, 3–12.

    Article  CAS  PubMed  Google Scholar 

  9. Finkel, T. (2012). Signal transduction by mitochondrial oxidants. Journal of Biological Chemistry, 287, 4434–4440.

    Article  CAS  PubMed  Google Scholar 

  10. Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 12, 931–947.

    Article  CAS  PubMed  Google Scholar 

  11. Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nature Reviews Drug Discovery, 8, 579–591.

    Article  CAS  PubMed  Google Scholar 

  12. Esme, H., Cemek, M., Sezer, M., et al. (2008). High levels of oxidative stress in patients with advanced lung cancer. Respirology, 13(1), 112–116.

    Article  PubMed  Google Scholar 

  13. Sasaki, Y. (2006). Does oxidative stress participate in the development of hepatocellular carcinoma? Journal of Gastroenterology, 41(12), 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  14. Lawless, M. W., Byrne, K. J., & Gray, S. G. (2010). Targeting oxidative stress in cancer. Expert opinion on therapeutic targets, 14(11), 1225–1245.

    Article  CAS  PubMed  Google Scholar 

  15. Martindale, J. L., & Holbrook, N. J. (2002). Cellular response to oxidative stress: Signaling for suicide and survival. Journal of Cellular Physiology, 192, 1–15.

  16. Irrazabal, T., Thakur, B. K., Kang, M., Malaise, Y., Streutker, C., Wong, E. O. Y., Copeland, J., Gryfe, R., Guttman, D. S., Navarre, W. W., & Martin, A. (2020). Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer, Nature Communications. 11.

  17. Chua, Y. L., Dufour, E., Dassa, E. P., Rustin, P., Jacobs, H. T., Taylor, C. T., & Hagen, T. (2010). Stabilization of hypoxia-inducible factor-1α protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. Journal of Biological Chemistry, 285(41), 31277–31284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krawczynski, K., Godlewski, J., & Bronisz, A. (2020). Oxidative stress—Part of the solution or part of the problem in the hypoxic environment of a brain tumor. Antioxidants, 9(8), 747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giannoni, E., Parri, M., & Chiarugi, P. (2012). EMT and oxidative stress: A bidirectional interplay affecting tumor malignancy. Antioxidants & Redox Signaling, 16(11), 1248–1263.

    Article  CAS  Google Scholar 

  20. Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., Loguercio, C., & Loguercio, C. (2007). Chronic inflammation and oxidative stress in human carcinogenesis. International Journal of Cancer, 121(11), 2381–2386.

    Article  CAS  PubMed  Google Scholar 

  21. Nathan, C. (2003). Specificity of a third kind: Reactive oxygen and nitrogen intermediates in cell signalling. The Journal of Clinical Investigation, 111, 769–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kroncke, K. D. (2003). Nitrosative stress and transcription. Biological Chemistry, 384(1011), 1365–1377.

    PubMed  Google Scholar 

  23. Hinson, R. M., Williams, J. A., & Shacter, E. (1996). Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: Possible role of cyclooxygenase. Proceedings of the National Academy of Sciences U. S. A., 93(10), 4885–4890.

    Article  CAS  Google Scholar 

  24. Baron, J. A., & Sandler, R. S. (2000). Nonsteroidal anti-inflammatory drugs and cancer prevention. Annual Review of Medicine, 51, 511–523.

    Article  CAS  PubMed  Google Scholar 

  25. Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., Handsworth, H., Turner, L., Rollins, B., Pasparakis, M., Kollias, G., & Balkwill, F. (1999). Mice deficient tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Medicine, 5, 828–831.

    Article  CAS  PubMed  Google Scholar 

  26. Uchida, K. (2003). 4-Hydroxy-2-nonenal: A product and mediator of oxidative stress. Progress in Lipid Research, 42, 318–343.

    Article  CAS  PubMed  Google Scholar 

  27. Giorgi, C., Marchi, S., & Pinto, P. (2018). The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology, 19(11), 713–730.

    Article  CAS  PubMed  Google Scholar 

  28. Kuhlbrandt, W. (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biology, 13, 89.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patergnani, S., Bouhamida, E., Leo, S., Pinton, P., & Rimessi, A. (2021). Mitochondrial oxidative stress and “Mito-Inflammation”: Actors in the disease. Biomedicines, 9, 216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gammage, P. A., & Frezza, C. (2019). Mitochondrial DNA: The overlooked oncogenome? BMC Biology, 17, 53.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rimessi, A., Previati, M., Nigro, F., Wieckoeski, M. R., & Pinton, P. (2016). Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. International Journal of Biochemistry & Cell Biology, 81, 281–293.

    Article  CAS  Google Scholar 

  32. Nohl, H., Gille, L., & Staniek, K. (2005). Intracellular generation of reactive oxygen species by mitochondria. Biochemical Pharamacology, 69, 719–723.

    Article  CAS  Google Scholar 

  33. Hahn, A., & Zuryn, S. (2013). Mitochondrial Genome (mtDNA) mutations that generate reactive oxygen species. Antioxidants, 8, 392.

    Article  Google Scholar 

  34. McArthur, K., Whitehead, L. W., Heddleston, J. M., Li, L., Padman, B. S., Oorschot, V., Geoghegan, N. D., Chappaz, S., Davidson, S., San Shin, H., Lane, R. M., Dramicanin, M., Saunders, T. L., Sugiana, C., Lessene, R., Osellame, L. D., Chew, T. L., Dewson, G., Lazarou, M., … Kile, B. T. (2018). BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 359, 6378.

    Article  Google Scholar 

  35. Kalkavan, H., & Green, D. R. (2018). MOMP, cell suicide as a BCL-2 family business. Cell Death and Differentiation, 25, 46–55.

    Article  CAS  PubMed  Google Scholar 

  36. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., & Simon, M. C. (2015). Mitochondrial dysfunction resulting from loss of cytochrome C impairs cellular sensing and hypoxic HIF-alpha activation. Cell Metabolism, 1, 393–399.

    Article  Google Scholar 

  37. Ichimura, H., Parthasarathi, K., Quadri, S., Issekutz, A. C., & Bhattacharya, J. (2003). Mechano-oxidative copuling by mitochondria induces pro-inflammatory responses in lung venular capillaries. The Journal of Clinical Investigation, 111, 691–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawai, T., & Akira, S. (2006). TLA signaling. Cell Death and Differentation, 13, 816–825.

    Article  CAS  Google Scholar 

  39. Weinberg, F., Ramnath, N., & Nagrath, D. (2019). Reactive oxygen species in the tumor microenvironment: An overview. Cancers, 11, 1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong, Z., Shanmughapriya, S., Tomar, D., Siddiqui, N., Lynch, S., Nemani, N., Breves, S. L., Zhang, X., Tripathi, A., Palaniappan, P., Riitano, M. F., Worth, A. M., Seelam, A., Carvalho, E., Subbiah, R., Jana, F., Soboloff, J., Peng, Y., Cheung, J. Y., … Madesh, M. (2017). Mitochonsrial Ca (2+) uniporter is a mitochondrial luminal redox sensor that augments MCU channel activity. Molecular Cell, 65, 1014–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, N., & Kim, D. (2016). Cancer Metabolism: Fueling more than just growth. Molecular Cell, 39, 847–854.

    Article  CAS  Google Scholar 

  42. Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attentuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology and tumor maintenance. Cancer Cell, 9, 425–434.

    Article  CAS  PubMed  Google Scholar 

  43. Schulz, T. J., Thierbach, R., Voigt, A., Drewes, G., Mietzner, B., Steinberg, P., Pfeiffer, A. F., & Ristow, M. (2006). Introduction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. Journal of Biological Chemistry, 281, 977–981.

    Article  CAS  PubMed  Google Scholar 

  44. Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, A., Armistead, S., Lemire, K., Orrell, J., Teich, J., Chomiz, S., & Ferrick, D. A. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology. Cell Physiology, 292, C125–C136.

  45. Aretz, S., Vasen, H. F. A., & Olschwang, S. (2011). Clinical utility gene card for: familial adenomatous polyposis (FAP) and attenuated FAP (AFAP), European Journal of Human Genetics 19(7).

  46. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. Cancer Journal for Clinicians, 61(2), 69–90.

    Article  Google Scholar 

  47. Souglakos, J. (2017). Genetic alterations in sporadic and hereditary colorectal cancer: Implementations for screening and followup. Digestive Diseases, 25(1), 9–19.

  48. Thomas, V. M., Baby, B., Wang, K., Lei, F., Chen, Q., Huang, B., & Mathew, A. (2020). Trends in colorectal cancer incidence in India, Journal of Clinical Oncology, 38(15), e16084-e16084.

  49. Mathew, A., Baby, B., Wang, K., Sirohi, B., Lei, F., Chen, Q., Haung, B. (2019). Colorectal cancer incidence in younger adults in India, Gut, 69(10).

  50. Foksinski, M., Rozalski, R., Guz, J., Ruszkowska, B., Sztukowska, P., Piwowaeski, M., Klungland, A., & Olinski, R. (2004). Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radical Biology & Medicine, 37(9), 1449–1454.

    Article  CAS  Google Scholar 

  51. Oberreuther-Moschner, D. L., Rechkemmer, G., & PoolZobel, B. L. (2005). Basal colon crypt cells are more sensitive than surface cells toward hydrogen peroxide, a factor of oxidative stress. Toxicology Letters, 159(3), 212–218.

    Article  CAS  PubMed  Google Scholar 

  52. Danese, S., & Mantovani, A. (2013). Inflammatory bowel disease ad intestinal cancer: A paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene, 29, 3313–3323.

    Article  Google Scholar 

  53. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84.

    Article  CAS  Google Scholar 

  54. Gyde, S., Prior, P., Dew, M. J., Saunders, V., Waterhouse, J. A., & Allan, R. N. (1982). Mortality in ulcerative colitis. Gastroenterology, 83, 36–43.

    Article  CAS  PubMed  Google Scholar 

  55. Bitton, M. A., Peppercorn, D. A., Antonioli, D. A., Niles, J. L., Shah, S., Bousvaros, A., Ransil, B., Wild, G., Cohen, A., Edwardes, M. D., & Stevens, A. C. (2001). Clinical, biological, and histologic parameters as predictors of relapse in ulcerative colitis. Gastroenterology, 120(1), 13–20.

    Article  CAS  PubMed  Google Scholar 

  56. Oshitani, N., Sawa, Y., Hara, J., Adachi, K., Nakamura, S., Matsumoto, T., Arakawa, T., & Kuroki, T. (1997). Functional and phenotypical activation of leucocytes in inflamed human colonic mucosa. Journal of Gastroenterology, 12(12), 809–814.

  57. Wang, Z., Li, S., Cao, Y., Tian, X., Zeng, R., Liao, D., Cao, D. (2016). Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer, Oxidative Medicine and Cellular Longevity, 9875298.

  58. Tang, S., Yuan, X., Song, J., Chen, Y., Tan, X., & Li, Q. (2019). Association analyses of the JAK/STAT signaling pathway with the progression and prognosis of colon cancer. Oncology Letters, 17, 159–164.

    CAS  PubMed  Google Scholar 

  59. Li, L., & Shaw, P. E. (2004). A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress. Biochemical and Biophysical Research Communications, 322, 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  60. Greenhough, A., Smart, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., & Kaidi, A. (2009). The COX-2/PGE2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(9), 377–386.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, H., Liu, X., Zhang, C., Zhu, H., Hu, Q., Bu, Y., & Lei, Y. (2017). Redox imbalance in the development of colorectal cancer. Journal of Cancer, 8, 1586–1597.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ju, H. Q., Lu, Y. X., Chen, D. L., Zuo, Z. X., Liu, Z. X., Wu, Q. N., Mo, H. Y., Wang, Z. X., Wang, D. S., Pu, H. Y., Zeng, Z., Li, B., Xie, D., Huang, P., Hung, M., Chiao, P. J., & Xu, R. (2019). Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: Mechanisms and therapeutic implications. Journal of the National Cancer Institute, 111, 584–596.

    Article  PubMed  Google Scholar 

  63. Myers, J. N., Schaffer, M. W., Korolkova, O. Y., Williams, A. D., Gangula, P. R., & A.E. MKoma,. (2014). Implications of the colonic deposition of free hemoglobin-α chain: A previously unknown tissue by-product in inflammatory bowel disease. Inflammatory Bowel Disease, 20, 1530–1547.

    Article  Google Scholar 

  64. Obtułowicz, T., Winczura, A., Speina, E., Swoboda, M., Janik, J., Janowska, B., Cieśla, J. M., Kowalczyk, P., Jawien, A., & Gackowski, D. (2010). Aberrant repair of etheno-DNA adducts in leukocytes and colon tissue of colon cancer patients. Free Radical Biology & Medicine, 49, 1064–1071.

    Article  Google Scholar 

  65. Rouzier, R., Perou, C. M., Symmans, W. F., Ibrahim, N., Cristofanilli, M., Anderson, K., Hess, K. R., Stec, J., Ayers, M., Wagner, P., Morandi, P., Fan, C., Rabiul, I., Ross, J. S., Hortobagyi, G. N., & Pusztai, L. (2005). Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clinical Cancer Research, 11(16), 5678–5685.

    Article  CAS  PubMed  Google Scholar 

  66. Malvia, S., Bagadi, S. A., Dubey, U. S., & Saxena, S. (2017). Epidemiology of breast cancer in Indian women. Asia-Pacific Journal of Clinical Oncology, 13(4), 289–295.

    Article  PubMed  Google Scholar 

  67. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Crujeiras, A. B., Diaz-Lagares, A., Carreira, M. C., Amil, M., & Casanueva, F. F. (2013). Oxidative stress associated to dysfunctional adipose tissue: A potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radical Research, 47, 243–256.

    Article  CAS  PubMed  Google Scholar 

  69. Dai, Q., Gao, Y. T., Shu, X. O., Yang, G., Milne, G., Cai, Q., Wen, W., Rothman, N., Cai, H., Xiang, Y., Chow, W., & Zheng, W. (2009). Oxidative stress, obesity, and breast cancer risk: Results from the Shanghai Women’s Health Study. Journal of Clinical Oncology, 27, 2482–2488.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hills, S. A., & Diffley, J. F. (2014). DNA replication and oncogene-induced replicative stress. Current Biology CB, 24(10), R435–R444.

    Article  CAS  PubMed  Google Scholar 

  71. Heirman, I., Ginneberge, D., Brigelius-Flohe, R., Hendrickx, N., Agostinis, P., Brouckaert, P., Rottiers, P., & Grooten, J. (2006). Blocking tumor cell eicosanoid synthesis by GPx4 impedes tumor growth and malignancy. Free Radical Biology & Medicine, 40(2), 285–294.

    Article  CAS  Google Scholar 

  72. Mahalingaiah, P. K., & Singh, K. P. (2014). Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One, 9(1), e87371.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Key, T., Appleby, P., Barnes, I., & Reeves, G. (2002). Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis of nine prospective studies. Journal of the National Cancer Institute, 94, 606–616.

    Article  CAS  PubMed  Google Scholar 

  74. Vona-davis, L., & Rose, D. P. (2007). Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocrine-Related Cancer, 14, 189–206.

    Article  CAS  PubMed  Google Scholar 

  75. Kershaw, E. E., & Flier, J. S. (2004). Adipose tissue as an endocrine organ. Journal of Clinical Endocrinology and Metabolism, 89, 2548–2556.

    Article  CAS  PubMed  Google Scholar 

  76. Rao, V. S., Dyer, C. E., Jammel, J. K., Drew, P. J., & Greenman, J. (2006). Potential prognostic and therapeutic roles for cytokines in breast cancer (Review). Oncology Reports, 15(1), 179–185.

    CAS  PubMed  Google Scholar 

  77. Ruan, H., & Lodish, H. F. (2003). Insulin resistance in adipose tissue: Direct and indirect effects of tumor necrosis factor-a. Cytokine & Growth Factor Reviews, 14, 447–455.

    Article  CAS  Google Scholar 

  78. Purohit, A., Ghilchik, M. W., Duncan, L., Wang, D. Y., Singh, A., Walker, M. M., & Reed, M. J. (1995). Aromatase activity and interleukin-6 production by normal and malignant breast tissues. Journal of Clinical Endocrinology and Metabolism, 80, 3052–3058.

    CAS  PubMed  Google Scholar 

  79. Basu, S., Nachat-Kappes, R., Caldefie-Chezet, F., & Vasson, M. P. (2013). Eicosanoids and adipokines in breast cancer: From molecular mechanisms to clinical considerations. Antioxidants & Redox Signaling, 1(3), 323–360.

    Article  Google Scholar 

  80. Madeddu, C., Gramignano, G., Floris, C., Muren, G., Sollai, G., & Maccio, A. (2014). Role of inflammation and oxidative stress in postmenopausal oestrogen-dependent breast cancer. Journal of Cellular and Molecular Medicine, 18(12), 2519–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghosh, S., & Ashcraft, K. (2013). An IL-6 link between obesity and cancer. Frontiers in Bioscience, 5, 461–478.

    Article  Google Scholar 

  82. Sarvas, J. L., Khaper, N., Lees, S. J. (2013). The IL-6 paradox: Context dependent interplay of SOCS3 and AMPK, Journal of Diabetes & Metabolism.

  83. Sachdev, D., & Yee, D. (2001). The IGF system and breast cancer. Endocrine-Related Cancer, 8, 197–200.

  84. Leppkes, M., Roulis, M., Neurath, M. F., Kollias, G., & Becker, C. (2014). Pleiotropic functions of TNF-alpha in the regulation of the intestinal epithelial response to inflammation. International Immunology, 26(9), 509–515.

    Article  CAS  PubMed  Google Scholar 

  85. Sorio, G., Ofri-Shahak, M., Haas, I., Yaal-Hahoshen, N., Leider-Trejo, L., Leibovich-Rivkin, T., Weitzenfeld, P., Meshel, T., Shabtai, E., Gutman, M., & Ben-Baruch, A. (2011). Inflammatory mediators in breast cancer: Coordinated expression of TNFalpha & IL-1beta with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer, 11, 130.

    Article  Google Scholar 

  86. Nourazarian, A. R., Kangari, P., & Salmaninejad, A. (2014). Roles of oxidative stress in the development and progression of breast cancer. Asian Pacific Journal of Cancer Prevention, 15(12), 4745–4751.

    Article  PubMed  Google Scholar 

  87. Kangari, P., Zarnoosheh Farahany, T., Golchin, A., Ebadollahzadeh, S., Salmaninejad, A., Mahboob, S. A., & Nourazarian, A. (2010). The lipid peroxidation in breast cancer patients. General Physiology and Biophysics, 29, 208–210.

    Google Scholar 

  88. Hursting, S. D., & Berger, N. A. (2010). Energy balance, host-related factors, and cancer progression. Journal of Clinical Oncology, 28, 4058–4065.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Acharya, A., Das, I., Chandhok, D., & Saha, T. (2010). Redox regulation in cancer: A double-edged sword with therapeutic potential. Oxidative Medicine and Cellular Longevity, 3, 23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vucenik, I., & Stains, J. P. (2012). Obesity and cancer risk: Evidence, mechanisms, and recommendations. Annals. New York Academy of Sciences, 1271, 37–43.

    Article  CAS  Google Scholar 

  91. Grunt, T. W., & Mariani, G. L. (2013). Novel approaches for molecular targeted therapy of breast cancer: Interfering with PI3K/AKT/mTOR signaling. Current Cancer Drug Targets, 13, 188–204.

    Article  CAS  PubMed  Google Scholar 

  92. Karlson, E., Perez-Tenorio, G., Amin, R., Bostner, J., Skoog, L., Fornander, T., Sgroi, D. C., Nordenskjold, B., Hallbeck, A., & Stal, O. (2013). The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: A retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Research, 15(5), R96.

    Article  Google Scholar 

  93. Schiff, R., Reddy, P., Ahotupa, M., Coronado-Heinsohn, E., Grim, M., Hilsenbeck, S. G., Lawrence, R., Deneke, S., Herrera, R., Chamness, G. C., Fuqua, S. A., Brown, P. H., & Osborne, C. K. (2000). Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. Journal of the National Cancer Institute, 92(23), 1926–1934.

    Article  CAS  PubMed  Google Scholar 

  94. Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., & Altman, R. B. (2011). Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenetics and Genomics, 21(7), 440–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yusuf, R., Duan, Z., Lamendola, D., Penson, R., & Seiden, M. (2003). Paclitaxel resistance: Molecular mechanisms and pharmacologic manipulation. Current Cancer Drug Targets, 3(1), 1–19.

  96. Panis, C., Victorino, V. J., Herrera, A. C. S. A., Cecchini, A. L., Simao, A. N. C., Tomita, L. Y., & Cecchini, R. (2016). Can breast tumors affect the oxidative status of the surrounding environment? A comparative analysis among cancerous breast, mammary adjacent tissue, and plasma. Oxidative Medicine and Cellular Longevity, 2016, 6429812.

    Article  Google Scholar 

  97. Manello, F., Tonti, G. A., Pagliarini, S., Benedetti, S., Canestrari, F., Zhu, W., Qin, W., & Sauter, E. R. (2007). The 8-epimer of prostaglandin F (2 alpha), a marker of lipid peroxidation and oxidative stress, is decreased in the nipple aspirate fluid of women with breast cancer. International Journal of Cancer, 120(9), 1971–1976.

    Article  Google Scholar 

  98. Bishop, J. (2014). Cancer facts & figures 2014. American Cancer Society. Harwood academic publications.

    Google Scholar 

  99. International Agency for Research on Cancer (WHO). GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012. Lung Cancer: Fact sheets, IARC (2012).

  100. Indian Council of Medical research, National Cancer Registry Programme. (2013) Three-year Report of Population Based Cancer Registries: 2009–2011.

  101. Doll, R., & Hill, A. B. (1950). Smoking and carcinoma of the lung: Preliminary report. British Medical Journal, 2(4682), 739–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Walser, T., Cui, X., Yanagawa, J., Lee, J. M., Heinrich, E., Lee, G., Sharma, S., & Dubinett, S. M. (2008). Smoking and lung cancer: The role of inflammation. Proceedings of the American Thoracic Society, 5(8), 811–805.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Field, R. W., & Withers, B. L. (2012). Occupational and environmental causes of lung cancer. Clinics in Chest Medicine, 33(4), 681–703.

  104. Barreiro, E., Fermosell, C., Mateu-Jimenez, M., Sanchez-Font, A., Pijuan, L., Gea, J., & Curull, V. (2013). Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radical Biology & Medicine, 65, 859–871.

  105. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  106. Azad, N., Rojanasakul, Y., & Vallyathan, V. (2008). Inflammation and lung cancer: Roles of reactive oxygen/ nitrogen species. Jouranl of Toxicology and Envronmental Health: Critical Reviews B., 11(1), 1–15.

    Article  CAS  Google Scholar 

  107. Rahman, I. (2002). Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochemical Parmacology, 64(5–7), 935–942.

    Article  CAS  Google Scholar 

  108. Rahman, I., & MacNee, W. (1998). Role of transcription factors in inflammatory lung diseases. Thorax, 55, 601–612.

    Article  Google Scholar 

  109. Shalapour, S., & Karin, M. (2015). Immunity, inflammation, and cancer: An eternal fight between good and evil. The Journal of Clinical Investigation, 125(9), 3347–3355.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Taniguchi, K., & Karin, M. (2018). NF-κB, inflammation, immunity and cancer: Coming of age. Nature Reviews Immunology, 18, 309–324.

    Article  CAS  PubMed  Google Scholar 

  111. Antoni, S., Ferlay, J., Soerjomataram, I., Znaor, A., Jemal, A., & Bray, F. (2017). Bladder cancer incidence and mortality: A global overview and recent trends. European Urology, 71, 96–108.

    Article  PubMed  Google Scholar 

  112. Babjuk, M., Bohle, A., Burger, M., Capoun, O., Cohen, D., Compera, E. M., Hernandez, V., Kaasinen, E., Palou, J., Roupret, M., et al. (2017). EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: Update 2016. European Urology, 71, 447–461.

    Article  PubMed  Google Scholar 

  113. Dutta, U., Bush, N., Kalsi, D., Popli, P., & Kapoor, V. K. (2019). Epidemiology of gallbladder cancer in India. Chinese Clinical Oncology, 8(4), 33.

    Article  PubMed  Google Scholar 

  114. Dobruch, J., Daneshmand, S., Fisch, M., Lotan, Y., Noon, A. P., Resnick, M. J., Shariat, S. F., Zlotta, A. R., & Boorjian, S. A. (2016). Gender and bladder cancer: A collaborative review of etiology, biology, and outcomes. European Urology, 69, 300–310.

    Article  PubMed  Google Scholar 

  115. Rodrigo, R., Libuy, M., Feliu, F., & Hasson, D. (2013). Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Disease Markers, 35, 773–790.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Oing, C., Rink, M., Oechsle, K., Seidel, C., von Amsberg, G., & Bokemeyer, C. (2016). Second line chemotherapy for advanced and metastatic urothelial carcinoma: Vinflunine and beyond – A comprehensive review of the current literature. Journal of Urology, 195, 254–263.

    Article  CAS  PubMed  Google Scholar 

  117. Snyderwine, E. G., Sinha, R., Felton, J. S., & Ferguson, L. R. (2002). Highlights of the eighth international conference on carcinogenic/mutagenic N-substituted aryl compounds. Mutation Research, 506–507, 1–8.

    Article  PubMed  Google Scholar 

  118. Koshiaris, C., Aveyard, P., Oke, J., Ryan, R., Szatkowskil, S. R., & Farley, A. (2017). Smoking cessation and survival in lung, upper aero-digestive tract and bladder cancer: Cohort study. British Journal of Cancer, 117, 1224–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Miyazaki, J., Nakamura, H., Yano, I., Nakaya, A., Kohama, H., Kawai, K., Joraku, A., Nakamura, T., Harashima, H., & Akaza, H. (2011). The therapeutic effects of R8-liposome-BCG-CWS on BBN-induced rat urinary bladder carcinoma. Anticancer Research, 31, 2065–2071.

    CAS  PubMed  Google Scholar 

  120. Freedman, N. D., Silverman, D. T., Hollenbeck, A. R., Schatzkin, A., & Abnet, C. C. (2011). Association between smoking and risk of bladder cancer among men and women. JAMA, 306, 737–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Margulis, V., Shariat, S. F., Ashfaq, R., Thompson, M., Sagalowsky, A. I., Hsieh, J. T., & Lotan, Y. (2007). Expression of cyclooxygenase-2 in normal urothelium, and Superficial and advanced transitional cell carcinoma of bladder. Journal of Urology, 177, 1163–1168.

    Article  CAS  PubMed  Google Scholar 

  122. Lepara, Z., Lepara, O., Fajkic, A., Rebic, D., Alic, J., & Spahovic, H. (2020). Serum malonialdehyde (MDA) level as a potential biomarker of cancer progression for patients with bladder cancer. Romanian Journal of Internal Medicine, 58, 146–152.

    Article  PubMed  Google Scholar 

  123. Marnett, L. J., Riggins, J. N., & West, J. D. (2003). Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. Journal of Clinical Investigation, 111, 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Szymanska, B., Sawicka, E., Matuszewski, M., Dembowski, J., & Piwowar, A. (2020). The dependence between urinary levels of angiogenesis factors, 8-iso-prostaglandin F2α, γ-synuclein, and interleukin-13 in patients with bladder cancer: A pilot study. Journal of Oncology, 2020, 1–11.

    Article  Google Scholar 

  125. Shimada, K., Fujji, T., Anai, S., Fujimoto, K., & Konishi, N. (2011). ROS generation via NOX4 and its utility in the cytological diagnosis of urothelial carcinoma of the urinary bladder. BMC Urology, 11, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gecit, I., Aslan, M., Gunes, M., Pirincci, N., Esen, R., Demir, H., & Ceylan, K. (2012). Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer. Journal of Cancer Research and Clinical Oncology, 138, 739–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kilic, S., Bayraktar, N., Beytur, A., Ergin, H., Bayraktar, M., Egri, M., & Egri, M. (2006). Can the levels of nitric oxide in the urine, serum and tumor tissue be putative markers for bladder cancer? International Journal of Urology, 13, 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  128. Sandes, E. O., Lodillinsky, C., Langle, Y., Belgorosky, D., Marino, L., Gimenez, L., Casabe, A. R., & Eijan, A. M. (2012). Inducible nitric oxide synthase and PPARγ are involved in bladder cancer progression. Journal of Urology, 188, 967–973.

    Article  CAS  PubMed  Google Scholar 

  129. Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4, 71–78.

    Article  CAS  PubMed  Google Scholar 

  130. Huddson, J. D., Shoaibi, M. A., Maestro, R., Carnero, A., Hannon, G. J., & Beach, D. H. (1999). A proinfllamtory cytokine inhibits P53 tumor suppressor activity. Journal of Experimental Medicine, 190, 1375–1382.

    Article  Google Scholar 

  131. Petrenko, O., & Moll, U. M. (2005). Macrophage migration inhibitory factor MIF interferes with the Rb-E2F pathway. Molecular Cell, 17, 225–236.

    Article  CAS  PubMed  Google Scholar 

  132. Chen, R. J., Ho, Y. S., Guo, H. R., & Wang, Y. J. (2008). Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicological Sciences, 104, 283–293.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, B., Lu, Z., Hou, Y., Hu, J., & Wang, C. (2014). The effects of STAT3 and Survivin silencing on the growth of human bladder carcinoma cells. Tumour Biology, 35, 5401–5407.

    Article  CAS  PubMed  Google Scholar 

  134. Wigner, P., Grebowski, R., Bijak, M., Saluk-Bijak, J., & Szemraj, J. (2021). The interplay between oxidative stress, inflammation and angiogenesis in bladder cancer development. International Journal of Molecular Sciences, 22, 4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wigner, P., Szymanska, B., Bijak, M., Sawicka, E., Kowal, P., & Z. MArchewka, J. Saluk-Bijak,. (2021). Oxidative stress parameters as biomarkers of bladder cancer development and progression. Scientific Reports, 11, 15134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bray, F., Ferlay, J., Soerjomataram, I., Seigel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  137. Asplund, J., Kauppila, J. H., Mattson, F., & Lagergren, J. (2018). Survival trends in gastric adenocarcinoma: A population-based study in Sweden. Annals of Surgical Oncology, 25(9), 2693–2702.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sharma, A., & Radhakrishnan, V. (2011). Gastric cancer in India, Indian J. Med. Paediatr. Oncologia, 32(1), 12–16.

    Google Scholar 

  139. Klaunig, J. E. (2019). Oxidative stress and cancer. Current Pharmaceutical Design, 24(40), 4771–4778.

    Article  Google Scholar 

  140. Prasad, S., Gupta, S. C., Pandey, M. K., Tyagi, A. K., & Deb, L. (2016). Oxidative stress and cancer: Advances and challenges. Oxidative Medicine and Cellular Longevity, 2016, 5010423.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sitarz, R., Skierucha, M., Mielko, J., Offerhaus, G. J. A., Maciejewski, R., & Polkowski, W. P. (2018). Gastric cancer: Epidemiology, prevention, classification and treatment. Cancer Management and Research, 10, 239–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chaturvedi, R., Asim, M., Piazuelo, M. B., Yan, F., Barry, D. P., Sierra, J. C., Delgado, A. G., Hill, S., Casero, R. A., Bravo, L. E., Dominquez, R. L., Correa, P., Polk, D. B., Washington, M. K., Rose, K. L., Schey, K. L., Morgan, D. R., Peek, R. M., Jr., & Wilson, K. T. (2014). Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology, 146(7), 1739-1751.e14.

    Article  CAS  PubMed  Google Scholar 

  143. Brenner, H., Arndt, V., Sturmer, T., Stegmaier, C., Ziegler, H., & Dhom, G. (2000). Individual and joint contribution of family history and Helicobacter pylori infection to the risk of gastric cancer. Cancer, 88(2), 274–279.

    Article  CAS  PubMed  Google Scholar 

  144. Huang, T., Wang-Johanning, F., Zhou, F., Kallon, H., & Wei, Y. (2016). MicroRNAs serve as a bridge between oxidative stress and gastric cancer. International Journal of Oncology, 49(5), 1791–1800.

    Article  CAS  PubMed  Google Scholar 

  145. Wei, Y. C., Zhou, F. L., He, D. L., Bai, J. R., Ding, H., Wang, X. Y., & Nan, K. J. (2009). Oxidative stress in depressive patients with gastric adenocarcinoma. International Journal of Neuropsychopharmacology, 12, 1089–1096.

    Article  CAS  PubMed  Google Scholar 

  146. Hao, W., Yuan, X., Yu, L., Gao, C., Sun, X., Wong, D., Zheng. Q. (2015). Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS- mediated MAPKs and PI3K/AKT signaling pathways 10336.

  147. Cheng, J. J., Huang, W. C., & Chen, C. C. (2005). Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Molecular Biology of the Cell, 16, 5579–5591.

    Article  Google Scholar 

  148. Leone, A., Roca, M. S., Ciardiello, C., Terranova-Barberio, M., Vitagliona, C., Ciliberto, G., Mancini, R., Di Gennaro, E., Bruzzese, F., & Budillon, A. (2015). Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial orin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radical Biology & Medicine, 89, 287–299.

    Article  CAS  Google Scholar 

  149. Grivennikov, S. I., Gerten, F. R., & Karin, M. (2010). Immunity, inflammation and cancer. Cell, 140, 883–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pradere, J. P., Dapito, D. H., & Schwabe, R. F. (2014). The yin and yang of toll-like receptors in cancer. Oncogene, 33, 3485–3495.

    Article  CAS  PubMed  Google Scholar 

  151. Oshima, H., Matsunaga, A., Fujimura, T., Tsukamoto, T., Taketo, M. M., & Oshima, M. C. (2006). Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology, 131, 1086–1095.

    Article  CAS  PubMed  Google Scholar 

  152. Preiser, J. C. (2012). Oxidative stress. Journal of Parenteral and Enteral Nutrition, 36(2), 147–154.

    Article  CAS  PubMed  Google Scholar 

  153. Dharshini, L. C. P., Vishnupriya, S., Sakthivel, K. M., & Rasmi, R. R. (2020). Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cellular Signalling, 72(109670), 1–9.

  154. Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. Cell Death and Differentiation, 26, 199–212.

    Article  PubMed  Google Scholar 

  155. Hayes, J. D., Dinkova-Kostova, A. T., & Tew, K. D. (2020). Oxidative stress in cancer. Cancer Cell, 38(2), 167–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44, 479–496.

    Article  CAS  PubMed  Google Scholar 

  157. Blaylock, R. L. (2015). Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control. Surgical Neurology International, 6, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1–40.

    Article  CAS  PubMed  Google Scholar 

  159. Carini, F., Mazzola, M., Rappa, F., Jurjus, A., Geagea, A. G., Kattar, S., Bou-Assi, T., Jurjus, R., Damiani, P., Leone, A., & Tomasello, G. (2017). Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Research, 37, 4759–4766.

    CAS  PubMed  Google Scholar 

  160. Jezierska-Drutel, A., Rosenzweig, S. A., & Neumann, C. A. (2013). Role of oxidative stress and the microenvironment in breast cancer development and progression. Advances in Cancer Research, 119, 107–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Marumo, T., Schini-Kerth, V. B., Fisslthaler, B., & Busse, R. (1997). Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation, 96(7), 2361–2367.

    Article  CAS  PubMed  Google Scholar 

  162. Comito, G., Giannoni, E., Gennaro, P. D., Segura, C. P., Gerlini, G., & Chiarugi, P. (2012). Stromal fibroblasts synergize with hypoxic oxidative stress to enable melanoma aggressiveness. Cancer Letters, 324(1), 31–41.

    Article  CAS  PubMed  Google Scholar 

  163. Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 10(9), 3886–3907.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Valavanidis, A. (2018). Lung carcinogenesis as a result of oxidative stress and inflammation. Reactive oxygen species, oxidative stress, pulmonary inflammation and activation of transcription factors play important roles in lung cancer, Scientific Reviews.

  165. Sangani, R. G., & Ghio, A. J. (2011). Lung injury after cigarette smoking is particle related. International Journal of Chronic Obstructive Pulmonary Disease, 6, 191–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Maeda, H., & Akaike, H. (1998). Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry, 63, 854–865.

    CAS  PubMed  Google Scholar 

  167. Tawara, K., Oxford, J. T., & Jorcyk, C. L. (2011). Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: Potential of anti-Il-6 therapies. Cancer Management and Research, 3, 177–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wu, Z., Wang, L., Wen, Z., & Yao, J. (2021). Inetgrated analysis identifies oxidative stress genes associated with progression and prognosis in gastric cancer. Scientific Reports, 11, 3292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jia, X., Cui, J., Meng, X., Xing, L., Shen, H., Wang, J., Liu, J., Wang, Y., Lian, W., & Zhang, X. (2016). Malignant transformation of human gastric epithelium cells via reactive oxygen species production and Wnt/β-catenin pathway activation following 40-week exposure to ochratoxin A. Cancer Letters, 372(1), 36–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Department of Health Research provided financial assistance to Dr. R.R. Rasmi in the form of Young Scientist for the present study (Funding No. 12014/11/2018-HR/E-office:3151264), and financial support was given to Dr. K.M. Sakthivel by a PSGCAS Seed Grant (Ref No. PSGCAS/SGS/2019–2020/Biochem/020).

Author information

Authors and Affiliations

Authors

Contributions

Loganathan Chandramani Priya Dharshini — conceptualization, writing — original draft, Rajan Radha Rasmi — conceptualization, writing — review and editing; Chinnadurai Kathirvelan — conceptualization, writing — review and editing; Kalavathi Murugan Kumar — conceptualization, writing — review and editing; Kunnathur Murugesan Sakthivel — conceptualization, writing — review and editing.

Corresponding author

Correspondence to Kunnathur Murugesan Sakthivel.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharshini, L.C.P., Rasmi, R.R., Kathirvelan, C. et al. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl Biochem Biotechnol 195, 2893–2916 (2023). https://doi.org/10.1007/s12010-022-04266-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04266-z

Keywords

Navigation