Skip to main content

Advertisement

Log in

Cost Reduction in the Production of Spirulina Biomass and Biomolecules from Indole-3-Acetic Acid Supplementation in Different Growth Phases

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Despite the great potential for the industrial application of microalgae, production costs are still too high to make them a competitive raw material for commodities. Therefore, studying more efficient cultivation strategies in biomass production and economic viability is necessary. In this sense, this work aimed to reduce the production costs of biomass and biomolecules using phytohormone indole-3-acetic acid in different phases of Spirulina sp. LEB 18 cultivation. The experiments were conducted on bench scale indoor for 30 days. In each couple of experiments, the phytohormone was added on different days. The supplementation of indole-3-acetic acid on half of the growth deceleration phase of the microalga showed a cost reduction of 27%, 34%, and 75% for biomass, proteins, and carbohydrates, respectively. In addition, the strategy increased the final biomass concentration and carbohydrate content at 31.2 and 33.8%, respectively, compared to the condition without phytohormone. This study is the starting point for implementing phytohormone supplementation in industrial microalgal cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lucas, B. F., Rosa, A. P. C., Carvalho, L. F., Morais, M. G., Santos, T. D., & Costa, J. A. V. (2020). Snack bars enriched with Spirulina for schoolchildren nutrition. Food Science and Technology, 40(suppl 1), 146–152. https://doi.org/10.1590/fst.06719

    Article  Google Scholar 

  2. Rosa, A. P. C., Carvalho, L. F., Goldbeck, L., Enke, D. B. S., Rocha, C. B., Souza-Soares, L. A., Costa, J. A. V. (2020). Productive performance and fatty acid profile of Hungarian carp fingerlings fed with Spirulina enriched feed. Research, Society and Development, 9(3), 116932301. https://doi.org/10.33448/rsd-v9i3.2301

  3. El-Baz, F. K., Aly, H. F., & Abd-Alla, H. I. (2020). The ameliorating effect of carotenoid rich fraction extracted from Dunaliella salina microalga against inflammation-associated cardiac dysfunction in obese rats. Toxicology Reports, 7, 118–124. https://doi.org/10.1016/j.toxrep.2019.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Cruz, C. G., Silveira, J. T., Ferrari, F. M., Costa, J. A. V., & Rosa, A. P. C. (2019). The use of poly(3-hydroxybutyrate), C-phycocyanin, and phenolic compounds extracted from Spirulina sp. LEB 18 in latex paint formulations. Progress in Organic Coatings, 135, 100–104. https://doi.org/10.1016/j.porgcoat.2019.05.042

    Article  CAS  Google Scholar 

  5. Ribeiro, E. S., Tavella, R. A., Santos, G. S., Figueira, F. S., & Costa, J. A. V. (2020). Thermal and acoustic insulation boards from microalgae biomass, poly-β-hydroxybutyrate and glass wool. Research, Society and Development, 9(4), e143942995. https://doi.org/10.33448/rsd-v9i4.2995

  6. Cardias, B. B., Trevisol, T. C., Bertuol, G. G., Costa, J. A. V., & Santos, L. O. (2021). Hydrolyzed Spirulina biomass and molasses as substrate in alcoholic fermentation with application of magnetic fields. Waste and Biomass Valorization, 12(1), 175–183. https://doi.org/10.1007/s12649-020-00966-x

    Article  CAS  Google Scholar 

  7. Schüler, L. M., Santos, T., Pereira, H., Duarte, P., Katkam, N. G., Florindo, C., & Varela, J. C. S. (2020). Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research, 45, 101732. https://doi.org/10.1016/j.algal.2019.101732

    Article  Google Scholar 

  8. Moradi, Z., Haghjou, M. M., Zarei, M., Colville, L., & Raza, A. (2021). Synergy of production of value-added bioplastic, astaxanthin and phycobilin co-products and Direct Green 6 textile dye remediation in Spirulina platensis. Chemosphere, 280, 130920. https://doi.org/10.1016/j.chemosphere.2021.130920

    Article  CAS  PubMed  Google Scholar 

  9. Liberman, G. N., Ochbaum, G., Mejubovsky-Mikhelis, M., Bitton, R., & Arad, S. (2020). Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. International Journal of Biological Macromolecules, 145, 1171–1179. https://doi.org/10.1016/j.ijbiomac.2019.09.205

    Article  CAS  Google Scholar 

  10. Chalima, A., Taxeidis, G., & Topakas, E. (2020). Optimization of the production of docosahexaenoic fatty acid by the heterotrophic microalga Crypthecodinium cohnii utilizing a dark fermentation effluent. Renewable Energy, 152, 102–109. https://doi.org/10.1016/j.renene.2020.01.041

    Article  CAS  Google Scholar 

  11. Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35, 50–60. https://doi.org/10.1016/j.algal.2018.08.005

    Article  Google Scholar 

  12. Costa, J. A. V., Freitas, B. C. B., Rosa, G. M., Moraes, L., Morais, M. G., & Mitchell, B. G. (2019). Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology, 292, 121946. https://doi.org/10.1016/j.biortech.2019.121946

    Article  CAS  PubMed  Google Scholar 

  13. Show, P. L. (2022). Global market and economic analysis of microalgae technology: Status and perspectives. Bioresource Technology, 357, 127329. https://doi.org/10.1016/j.biortech.2022.127329

    Article  CAS  Google Scholar 

  14. Bezerra, P. Q. M., Moraes, L., Silva, T. N. M., Cardoso, L. G., Druzian, J. I., Morais, M. G., & Costa, J. A. V. (2021). Innovative application of brackish groundwater without the addition of nutrients in the cultivation of Spirulina and Chlorella for carbohydrate and lipid production. Bioresource Technology, 345, 126543. https://doi.org/10.1016/j.biortech.2021.126543

    Article  CAS  PubMed  Google Scholar 

  15. Costa, J. A. V., Cruz, C. G., & Rosa, A. P. C. (2021). Insights into the technology utilized to cultivate microalgae in dairy effluents. Biocatalysis and Agricultural Biotechnology, 35, 102106. https://doi.org/10.1016/j.bcab.2021.102106

    Article  CAS  Google Scholar 

  16. Lv, H., Wang, Q., Wang, S., Qi, B., He, J., & Jia, S. (2019). Enhancing biomass production of Dunaliella salina via optimized combinational application of phytohormones. Aquaculture, 503(December 2018), 146–155. https://doi.org/10.1016/j.aquaculture.2018.12.077

  17. Park, W., Yoo, G., Moon, M., Kim, C. W., Choi, Y.-E., & Yang, J.-W. (2013). Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Applied Biochemistry and Biotechnology, 171(5), 1128–1142. https://doi.org/10.1007/s12010-013-0386-9

    Article  CAS  PubMed  Google Scholar 

  18. Renuka, N., Guldhe, A., Singh, P., Ansari, F. A., Rawat, I., & Bux, F. (2017). Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress. Energy Conversion and Management, 140, 14–23. https://doi.org/10.1016/j.enconman.2017.02.065

    Article  CAS  Google Scholar 

  19. Salama, E.-S., Kabra, A. N., Ji, M.-K., Kim, J. R., Min, B., & Jeon, B.-H. (2014). Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 172, 97–103. https://doi.org/10.1016/j.biortech.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  20. Yu, Z., Pei, H., Jiang, L., Hou, Q., Nie, C., & Zhang, L. (2018). Phytohormone addition coupled with nitrogen depletion almost tripled the lipid productivities in two algae. Bioresource Technology, 247(17923), 904–914. https://doi.org/10.1016/j.biortech.2017.09.192

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Z., Song, M., Pei, H., Jiang, L., Hou, Q., Nie, C., & Zhang, L. (2017). The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresource Technology, 239, 87–96. https://doi.org/10.1016/j.biortech.2017.04.120

    Article  CAS  PubMed  Google Scholar 

  22. Silveira, J. T., Rosa, A. P. C., & Costa, J. A. V. (2022). Modulating phytohormone supplementation can efficiently increase biomass and lipid production in Spirulina (Arthrospira). BioEnergy Research, 15, 112–120. https://doi.org/10.1007/s12155-021-10310-3

    Article  CAS  Google Scholar 

  23. Yamaguchi, I., Cohen, J. D., Culler, A. H., Quint, M., Slovin, J. P., Nakajima, M., Sakagami, Y. (2010). Plant Hormones. In H.-W. (Ben) Liu & L. Mander (Eds.), Comprehensive Natural Products II (pp. 9–125). Oxford: Elsevier. https://doi.org/10.1016/B978-008045382-8.00092-7

  24. Saygideger, S. D., & Okkay, O. (2008). Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells. Journal of Environmental Biology, 29(2), 175–178.

    CAS  PubMed  Google Scholar 

  25. Žižková, E., Kubeš, M., Dobrev, P. I., Přibyl, P., Šimura, J., Zahajská, L., & Motyka, V. (2017). Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Annals of Botany, 119(1), 151–166. https://doi.org/10.1093/aob/mcw194

    Article  CAS  PubMed  Google Scholar 

  26. Stirk, W. A., Ördög, V., Novák, O., Rolčík, J., Strnad, M., Bálint, P., & van Staden, J. (2013). Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology, 49(3), 459–467. https://doi.org/10.1111/jpy.12061

    Article  CAS  PubMed  Google Scholar 

  27. Sztein, A. E., Cohen, J. D., Fuente, I. G., & Cooke, T. J. (1999). Auxin metabolism in mosses and liverworts. American Journal of Botany, 86(11), 1544–1555. https://doi.org/10.2307/2656792

    Article  CAS  Google Scholar 

  28. Morais, M. G., Reichert, C. C., Dalcanton, F., Durante, A. J., Marins, L. F., & Costa, J. A. V. (2008). Isolation and characterization of a new Arthrospira strain. Zeitschrift für Naturforschung C, 63(1–2), 144–150. https://doi.org/10.1515/znc-2008-1-226

    Article  Google Scholar 

  29. Zarrouk, C. (1966). Contribution à l’étude d’une cyanophycée Influence de divers facteurs physuques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardener) Geitler. PhD thesis, University of Paris, Paris, France.

  30. Reichert, C. C., Reinehr, C. O., & Costa, J. A. V. (2006). Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor. Brazilian Journal of Chemical Engineering, 23(1), 23–28. https://doi.org/10.1590/S0104-66322006000100003

    Article  Google Scholar 

  31. Costa, J. A. V., Colla, L. M., Filho, P. D., Kabke, K., & Weber, A. (2002). Modelling of Spirulina platensis growth in fresh water using response surface methodology. World Journal of Microbiology & Biotechnology, 18, 603–607.

    Article  Google Scholar 

  32. Marsh, J. B., & Weinstein, D. B. (1966). Simple charring method for determination of lipids. Journal of Lipid Research, 7, 574–576.

    Article  CAS  PubMed  Google Scholar 

  33. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  35. AOAC. (1995). Official methods of analysis of AOAC International. (P. Cunniff, Ed.) (16th ed.). Virginia: AOAC International.

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. Financial support was also provided by the Ministry of Science, Technology, Innovations and Communications (MCTIC).

Author information

Authors and Affiliations

Authors

Contributions

JTS, APCR, MGM, and JAVC: conceptualization. JTS: data curation, formal analysis, validation, writing—original draft. APCR, MGM, and JAVC: writing—review and editing, supervision. MGM and JAVC: resources, funding acquisition.

Corresponding author

Correspondence to Jorge Alberto Vieira Costa.

Ethics declarations

Ethics Approval

This article does not contain any studies with animals or human participants.

Consent to Participate

The authors agreed to participate in this work.

Consent for Publication

The authors agreed to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, J.T., Rosa, A.P.C., Morais, M.G. et al. Cost Reduction in the Production of Spirulina Biomass and Biomolecules from Indole-3-Acetic Acid Supplementation in Different Growth Phases. Appl Biochem Biotechnol 195, 2882–2892 (2023). https://doi.org/10.1007/s12010-022-04251-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04251-6

Keywords

Navigation