Skip to main content
Log in

A New Mediterranean Flour Moth-Derived Chitosan: Characterization and Co-electrospun Hybrid Fabrication

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the chitin of adult Mediterranean flour moth (Ephestia kuheniella) (Cht) was extracted and then converted to chitosan by deacetylation process to achieve the chitosan derived from E. kuheniella (Chsfm). The new chitosan-based scaffold was produced using the polyvinyl alcohol (PVA) co-electrospinning technique. The degree of deacetylation was obtained using the distillation-titration and Fourier transform infrared spectroscopy. The surface morphology and crystallinity index of Chsfm were observed using scanning electron microscopy and X-ray diffraction analysis, respectively, and compared with the commercial chitosan (Chsc). Thermogravimetric analysis was used to estimate two chitosans’ water content and thermal stability. The average molecular mass analysis was performed using viscometry. Moreover, the minimum inhibitory concentration and DPPH assay were used to study the antimicrobial activity and antioxidant potential of the Chsfm, respectively. Accordingly, Chsfm was smoother with fewer pores and flakes than Chsc, and its crystallinity index was higher than Chsc. The water content and thermal stability were lower and similar for Chsfm compared to Chsc. The average molecular mass of Chsfm was ~ 5.8 kDa, making it classified as low molecular weight chitosan. The antimicrobial activity of Chsfm against a representative Gram-negative bacteria; E. coli resulted to be the same as Chsc. However, less effective than Chsc against a representative Gram-positive bacteria is S. aureus. The Chsfm/PVA ratio scaffold was optimized at 30:70 to fabricate a uniform nanofiber scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Yeul, V. S., & Rayalu, S. S. (2013). Unprecedented chitin and chitosan: A chemical overview. Journal of Polymers and the Environment, 21(2), 606–614.

    Article  CAS  Google Scholar 

  2. Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40–50.

    Article  CAS  Google Scholar 

  3. Rasweefali, M. K., Sabu, S., Sunooj, K. V., Sasidharan, A., & Xavier, K. A. M. (2021). Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohydrate Polymer Technologies and Applications, 2, 100032.

    Article  CAS  Google Scholar 

  4. Kaya, M., Mujtaba, M., Ehrlich, H., Salaberria, A. M., Baran, T., Amemiya, C. T., … Labidi, J. (2017). On chemistry of γ-chitin. Carbohydrate Polymers, 176, 177–186.

  5. Islam, S., Bhuiyan, M. A. R., & Islam, M. N. (2017). Chitin and chitosan: Structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25(3), 854–866.

    Article  CAS  Google Scholar 

  6. Islam, M. M., Shahruzzaman, M., Biswas, S., Sakib, M. N., & Rashid, T. U. (2020). Chitosan based bioactive materials in tissue engineering applications-A review. Bioactive materials, 5(1), 164–183.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arrouze, F., Desbrieres, J., Rhazi, M., Essahli, M., & Tolaimate, A. (2019). Valorization of chitins extracted from North Morocco shrimps: Comparison of chitin reactivity and characteristics. Journal of Applied Polymer Science, 136(30), 47804.

    Article  Google Scholar 

  8. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress In Polymer Science, 31(7), 603–632.

    Article  CAS  Google Scholar 

  9. Mohan, K., Ganesan, A. R., Muralisankar, T., Jayakumar, R., Sathishkumar, P., Uthayakumar, V., … Revathi, N. (2020). Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends in Food Science and Technology, 105(May), 17–42. https://doi.org/10.1016/j.tifs.2020.08.016

  10. Manosathiyadevan, M., Bhuvaneshwari, V., & Latha, R. (2017). Impact of insects and pests in loss of crop production: A review. Sustainable Agriculture Towards Food Security, 57–67.

  11. Tripathi, A. K. (2018). Pests of stored grains. In Pests and Their Management (pp. 311–359). Springer.

  12. Kurtuluş, A., Pehlivan, S., Achiri, T. D., & Atakan, E. (2020). Influence of different diets on some biological parameters of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 85, 101554.

    Article  Google Scholar 

  13. Moghaddassi, Y., Ashouri, A., Bandani, A. R., Leppla, N. C., & Shirk, P. D. (2019). Effect of Ephestia kuehniella (Lepidoptera: Pyralidae) larval diet on egg quality and parasitism by Trichogramma brassicae (Hymenoptera: Trichogrammatidae). Journal of Insect Science, 19(4), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pakizeh, M., Moradi, A., & Ghassemi, T. (2021). Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal, 159, 110709.

    Article  CAS  Google Scholar 

  15. Kou, S. G., Peters, L., & Mucalo, M. (2022). Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydrate Polymers, 119132.

  16. Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patrulea, V., Ostafe, V., Borchard, G., & Jordan, O. (2015). Chitosan as a starting material for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 97, 417–426.

    Article  CAS  PubMed  Google Scholar 

  18. Ahsan, S. M., Thomas, M., Reddy, K. K., Sooraparaju, S. G., Asthana, A., & Bhatnagar, I. (2018). Chitosan as biomaterial in drug delivery and tissue engineering. International Journal of Biological Macromolecules, 110, 97–109.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed, S., Ali, A., & Sheikh, J. (2018). A review on chitosan centred scaffolds and their applications in tissue engineering. International Journal of Biological Macromolecules, 116, 849–862.

    Article  CAS  PubMed  Google Scholar 

  20. Aranaz, I., Acosta, N., Civera, C., Elorza, B., Mingo, J., Castro, C., … Heras Caballero, A. (2018). Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers, 10(2), 213.

  21. Song, Z., Li, G., Guan, F., & Liu, W. (2018). Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers, 10(4), 389.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verma, M. L., Kumar, S., Das, A., Randhawa, J. S., & Chamundeeswari, M. (2020). Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environmental Chemistry Letters, 18(2), 315–323.

    Article  CAS  Google Scholar 

  23. Lizundia, E., Nguyen, T.-D., Winnick, R. J., & MacLachlan, M. J. (2021). Biomimetic photonic materials derived from chitin and chitosan. Journal of Materials Chemistry C, 9(3), 796–817.

    Article  CAS  Google Scholar 

  24. Jayakumar, R., Prabaharan, M., Kumar, P. T. S., Nair, S. V., & Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29(3), 322–337.

    Article  CAS  PubMed  Google Scholar 

  25. Garcia, C. E. G., Martínez, F. A. S., Bossard, F., & Rinaudo, M. (2018). Biomaterials based on electrospun chitosan. Relation between processing conditions and mechanical properties. Polymers, 10(3), 257.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nokhasteh, S., Molavi, A. M., Khorsand-Ghayeni, M., & Sadeghi-Avalshahr, A. (2019). Preparation of PVA/Chitosan samples by electrospinning and film casting methods and evaluating the effect of surface morphology on their antibacterial behavior. Materials Research Express, 7(1), 15401.

    Article  Google Scholar 

  27. Vaezifar, S., Razavi, S., Golozar, M. A., Esfahani, H. Z., Morshed, M., & Karbasi, S. (2015). Characterization of PLGA/chitosan electrospun nano-biocomposite fabricated by two different methods. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(2), 64–75.

    Article  CAS  Google Scholar 

  28. Guo, S., He, L., Yang, R., Chen, B., Xie, X., Jiang, B., … Ding, Y. (2020). Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. Journal of Biomaterials Science, Polymer Edition, 31(2), 155–168.

  29. Chen, J.-P., Chen, S.-H., & Lai, G.-J. (2012). Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Research Letters, 7(1), 1–11.

    Article  CAS  Google Scholar 

  30. Kaya, M., Baran, T., Erdoğan, S., Menteş, A., Özüsağlam, M. A., & Çakmak, Y. S. (2014). Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Materials Science and Engineering: C, 45, 72–81.

    Article  CAS  PubMed  Google Scholar 

  31. Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1), 48–56.

    Article  CAS  Google Scholar 

  32. Davies, D. H., & Hayes, E. R. (1988). Determination of the degree of acetylation of chitin and chitosan. Methods in Enzymology, 161, 442–446.

    Article  CAS  Google Scholar 

  33. Luo, Q., Wang, Y., Han, Q., Ji, L., Zhang, H., Fei, Z., & Wang, Y. (2019). Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydrate Polymers, 209, 266–275.

    Article  CAS  PubMed  Google Scholar 

  34. Sabnis, S., & Block, L. H. (1997). Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer Bulletin, 39(1), 67–71.

    Article  CAS  Google Scholar 

  35. Sayari, N., Sila, A., Abdelmalek, B. E., Abdallah, R. B., Ellouz-Chaabouni, S., Bougatef, A., & Balti, R. (2016). Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. International Journal of Biological Macromolecules, 87, 163–171.

    Article  CAS  PubMed  Google Scholar 

  36. Song, C., Yu, H., Zhang, M., Yang, Y., & Zhang, G. (2013). Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. International journal of Biological Macromolecules, 60, 347–354.

    Article  CAS  PubMed  Google Scholar 

  37. Marei, N. H., El-Samie, E. A., Salah, T., Saad, G. R., & Elwahy, A. H. M. (2016). Isolation and characterization of chitosan from different local insects in Egypt. International Journal of Biological Macromolecules, 82, 871–877. https://doi.org/10.1016/j.ijbiomac.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  38. Kim, M., Song, Y., Han, Y. S., Jo, Y. H., Choi, M. H., Park, Y., … Jung, W. (2017). Production of chitin and chitosan from the exoskeleton of adult two‐spotted field crickets (Gryllus bimaculatus). Entomological Research, 47(5), 279–285.

  39. Zainol Abidin, N. A., Kormin, F., Zainol Abidin, N. A., Mohamed Anuar, N. A. F., & Abu Bakar, M. F. (2020). The potential of insects as alternative sources of chitin: An overview on the chemical method of extraction from various sources. International Journal of Molecular Sciences, 21(14), 4978.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pérez-Álvarez, L., Ruiz-Rubio, L., & Vilas-Vilela, J. L. (2018). Determining the deacetylation degree of chitosan: Opportunities to learn instrumental techniques. Journal of Chemical Education, 95(6), 1022–1028.

    Article  Google Scholar 

  41. He, X., Li, K., Xing, R., Liu, S., Hu, L., & Li, P. (2016). The production of fully deacetylated chitosan by compression method. The Egyptian Journal of Aquatic Research, 42(1), 75–81.

    Article  Google Scholar 

  42. Fournier, P., Szczepanski, C. R., Godeau, R.-P., & Godeau, G. (2020). Chitosan extraction from Goliathus orientalis Moser, 1909: Characterization and comparison with commercially available chitosan. Biomimetics, 5(2), 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weißpflog, J., Vehlow, D., Müller, M., Kohn, B., Scheler, U., Boye, S., & Schwarz, S. (2021). Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state–Insights by various complimentary methods. International Journal of Biological Macromolecules, 171, 242–261.

    Article  PubMed  Google Scholar 

  44. Yuan, Y., Chesnutt, B. M., Haggard, W. O., & Bumgardner, J. D. (2011). Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials, 4(8), 1399–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marmier, T., Szczepanski, C. R., Candet, C., Zenerino, A., Godeau, R., & Godeau, G. (2020). International Journal of Biological Macromolecules Investigation on Mecynorhina torquata Drury , 1782 ( Coleoptera , Cetoniidae , Goliathini ) cuticle : Surface properties , chitin and chitosan extraction, 164, 1164–1173.

  46. Oladzadabbasabadi, N., Nafchi, A. M., Ariffin, F., Wijekoon, M. M. J. O., Al-Hassan, A. A., Dheyab, M. A., & Ghasemlou, M. (2022). Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydrate Polymers, 277, 118876.

    Article  CAS  PubMed  Google Scholar 

  47. Huang, Y.-L., & Tsai, Y.-H. (2020). Extraction of chitosan from squid pen waste by high hydrostatic pressure: Effects on physicochemical properties and antioxidant activities of chitosan. International Journal of Biological Macromolecules, 160, 677–687.

    Article  CAS  PubMed  Google Scholar 

  48. Vespidae, L. H. (1836). Extraction and physicochemical characterization of chitin derived from the Asian Hornet, Vespa velutina, 1836.

  49. Shin, C., Kim, D., & Shin, W. (2019). International Journal of Biological Macromolecules Characterization of chitosan extracted from Mealworm Beetle ( Tenebrio molitor , Zophobas morio ) and Rhinoceros Beetle ( Allomyrina dichotoma ) and their antibacterial activities, 125, 72–77.

  50. Venkateshaiah, A., Padil, V. V. T., Nagalakshmaiah, M., Waclawek, S., Černík, M., & Varma, R. S. (2020). Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers, 12(3), 512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ibitoye, E. B., Lokman, I. H., Hezmee, M. N. M., Goh, Y. M., Zuki, A. B. Z., & Jimoh, A. A. (2018). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials (Bristol), 13(2), 25009. https://doi.org/10.1088/1748-605X/aa9dde

    Article  CAS  Google Scholar 

  52. Battampara, P., Sathish, T. N., Reddy, R., Guna, V., Nagananda, G. S., Reddy, N., … Ravikumar, H. N. (2020). Properties of chitin and chitosan extracted from silkworm pupae and egg shells. International Journal of Biological Macromolecules, 161, 1296–1304.

  53. Aboudamia, F. Z., Kharroubi, M., Neffa, M., Aatab, F., Hanoune, S., Bouchdoug, M., & Jaouad, A. (2020). Potential of discarded sardine scales (Sardina pilchardus) as chitosan sources. Journal of the Air & Waste Management Association, 70(11), 1186–1197.

    Article  CAS  Google Scholar 

  54. da Jantzen Silva Lucas, A., Quadro Oreste, E., Leão Gouveia Costa, H., Martín López, H., Dias Medeiros Saad, C., & Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chemistry, 343, 128550. https://doi.org/10.1016/j.foodchem.2020.128550

    Article  CAS  Google Scholar 

  55. Ma, J., Xin, C., & Tan, C. (2015). Preparation, physicochemical and pharmaceutical characterization of chitosan from Catharsius molossus residue. International Journal of Biological Macromolecules, 80, 547–556.

    Article  CAS  PubMed  Google Scholar 

  56. Król-Morkisz, K., & Pielichowska, K. (2019). Thermal decomposition of polymer nanocomposites with functionalized nanoparticles. In Polymer Composites with Functionalized Nanoparticles (pp. 405–435). Elsevier.

  57. Abdel-Rahman, R. M., Hrdina, R., Abdel-Mohsen, A. M., Fouda, M. M. G., Soliman, A. Y., Mohamed, F. K., … Pinto, T. D. (2015). Chitin and chitosan from Brazilian Atlantic Coast: Isolation, characterization and antibacterial activity. International Journal of Biological Macromolecules, 80, 107–120.

  58. Erdogan, S., & Kaya, M. (2016). High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper. International Journal of Biological Macromolecules, 89, 118–126.

    Article  CAS  PubMed  Google Scholar 

  59. Moussout, H., Ahlafi, H., Aazza, M., & Bourakhouadar, M. (2016). Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polymer Degradation and Stability, 130, 1–9.

    Article  CAS  Google Scholar 

  60. Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., … Heras, Á. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203–230.

  61. Joseph, S. M., Krishnamoorthy, S., Paranthaman, R., Moses, J. A., & Anandharamakrishnan, C. (2021). A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technologies and Applications, 2, 100036.

    Article  CAS  Google Scholar 

  62. Minh, N. C., Van Hoa, N., & Trung, T. S. (2020). Preparation, properties, and application of low-molecular-weight chitosan. Thomas, S., Pius, A., Gopi, S., (Eds) Handbook of Chitin and Chitosan, Preparation and Properties, 1st ed., 453–471.

  63. Pandit, A., Indurkar, A., Deshpande, C., Jain, R., & Dandekar, P. (2021). A systematic review of physical techniques for chitosan degradation. Carbohydrate Polymer Technologies and Applications, 2, 100033.

    Article  CAS  Google Scholar 

  64. Rasweefali, M. K., Sabu, S., Sunooj, K. V., Sasidharan, A., & Xavier, K. A. M. (2021). Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohydrate Polymer Technologies and Applications, 2, 100032.

    Article  CAS  Google Scholar 

  65. Cai, Z., Mo, X., Zhang, K., Fan, L., Yin, A., He, C., & Wang, H. (2010). Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. International Journal of Molecular Sciences, 11(9), 3529–3539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ke, C.-L., Deng, F.-S., Chuang, C.-Y., & Lin, C.-H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology, 185, 57–63.

    Article  CAS  PubMed  Google Scholar 

  68. Li, J., & Zhuang, S. (2020). Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. European Polymer Journal, 138, 109984.

    Article  CAS  Google Scholar 

  69. Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467–475.

    Article  CAS  PubMed  Google Scholar 

  70. Confederat, L. G., Tuchilus, C. G., Dragan, M., Sha’at, M., & Dragostin, O. M. (2021). Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules, 26(12), 3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anraku, M., Gebicki, J. M., Iohara, D., Tomida, H., Uekama, K., Maruyama, T., … Otagiri, M. (2018). Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydrate Polymers, 199, 141–149.

  72. Kaya, M., Baran, T., Asan-Ozusaglam, M., Cakmak, Y. S., Tozak, K. O., Mol, A., … Sezen, G. (2015). Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnology and Bioprocess Engineering, 20(1), 168–179.

  73. Prabu, K., & Natarajan, E. (2012). In vitro antimicrobial and antioxidant activity of chitosan isolated from Podophthalmus vigil. Journal of Applied Pharmaceutical Science, 2(9), 75.

    Google Scholar 

  74. Mele, E. (2016). Electrospinning of natural polymers for advanced wound care: Towards responsive and adaptive dressings. Journal of Materials Chemistry B, 4(28), 4801–4812.

    Article  CAS  PubMed  Google Scholar 

  75. Sharma, R., Singh, N., Gupta, A., Tiwari, S., Tiwari, S. K., & Dhakate, S. R. (2014). Electrospun chitosan–polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. Journal of Materials Chemistry A, 2(39), 16669–16677.

    Article  CAS  Google Scholar 

  76. Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. CompositesScience and Technology, 70(5), 703–718.

    Article  CAS  Google Scholar 

  77. Koosha, M., Mirzadeh, H., Shokrgozar, M. A., & Farokhi, M. (2015). Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Advances, 5(14), 10479–10487.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also gratefully acknowledge the help provided by Dr. Yaghoub Fathipour for his support.

Funding

This work was supported by the University of Tehran, Iran National Science Foundation (INSF) and the National Institute for Medical Research Development (NIMAD).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Nargess Khosravi, Mahdi Zarabi, Sajjad Shojai, and Mehran Habibi-Rezaei and AA Moosavi-Movahedi. Nargess Khosravi and Sajjad Shojai wrote the first draft of the manuscript and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mahdi Zarabi or Mehran Habibi-Rezaei.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, N., Zarabi, M., Shojai, S. et al. A New Mediterranean Flour Moth-Derived Chitosan: Characterization and Co-electrospun Hybrid Fabrication. Appl Biochem Biotechnol 195, 3047–3066 (2023). https://doi.org/10.1007/s12010-022-04246-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04246-3

Keywords

Navigation