Skip to main content
Log in

Economical Optimization of Industrial Medium Culture for Bacterial Cellulose Production

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The competitiveness of bacterial cellulose (BC) production with plant cellulose can be achieved by production on cost-effective media. It was found that the bacterial cell number ratio of BC to culture medium increases over time so that from the fourth day, the entrapped cell number in the cellulose network exceeds the suspended cells. Optimization based on 23-full factorial showed that inoculum development at 50 rpm and the main culture process under static conditions significantly increases BC production. A cost-effective culture medium containing molasses (ML) and corn steep liquor (CSL) was developed based on the same C/N ratio to HS medium, with 7.24 g/l cellulose at C/N ratio 12.6 is competitive with maximum production 8.7 g/L in HS medium. The BC production cost was reduced about 94% using the proposed cheap and locally available medium containing ML and CSL, while BC mechanical properties increased by about 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The all of generated data during the current study are available in this article.

Abbreviations

C:

Carbon

N:

Nitrogen

RSM:

Response surface methodology

BC :

Bacterial cellulose

BBD:

Box-Behnken design

Eth:

Ethanol

CSL:

Corn steep liquor

HS:

Hestrin-Schramm

DOE:

Design of experiment

ML:

Molasses

Glu:

Glucose

References

  1. Abdullah, S. S. S., John, J. H. S. A., & Noor, M. A. M. (2020). The development of Acetobacter xylinum growth measurement through total protein analysis. Malaysian Journal of Analytical Sciences, 24(2), 258–265.

    Google Scholar 

  2. Aytekin, A. Ö., Demirbağ, D. D., & Bayrakdar, T. (2016). The statistical optimization of bacterial cellulose production via semi-continuous operation mode. Journal of Industrial and Engineering Chemistry, 37, 243–250.

    Article  CAS  Google Scholar 

  3. Babaeipour, V., Hamid, M., Chegeni, A., Imani, M., & Bahrami, A. (2021). study of structural characteristics of regenerated bacterial and plant cellulose. Polymer Science Series A., 63(4), 412–419.

    Article  Google Scholar 

  4. Bae, S., & Shoda, M. (2004). Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology progress, 20(5), 1366–1371.

    Article  CAS  PubMed  Google Scholar 

  5. Bae, S., & Shoda, M. (2005). Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Applied microbiology and biotechnology, 67(1), 45–51.

    Article  CAS  PubMed  Google Scholar 

  6. Bi, J. C., Liu, S. X., Li, C. F., Li, J., Liu, L. X., Deng, J., & Yang, Y. C. (2014). Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. Journal of applied microbiology, 117(5), 1305–1311.

    Article  CAS  PubMed  Google Scholar 

  7. Blanco Parte, F. G., Santoso, S. P., Chou, C.-C., Verma, V., Wang, H.-T., Ismadji, S., & Cheng, K.-C. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical reviews in biotechnology, 40(3), 397–414.

    Article  CAS  PubMed  Google Scholar 

  8. Cakar, F., Katı, A., Özer, I., Demirbağ, D. D., Şahin, F., & Aytekin, A. Ö. (2014). Newly developed medium and strategy for bacterial cellulose production. Biochemical engineering journal, 92, 35–40.

    Article  CAS  Google Scholar 

  9. Cheng, K.-C., Catchmark, J. M., & Demirci, A. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16(6), 1033–1045.

    Article  CAS  Google Scholar 

  10. Costa, A. F., Almeida, F. C., Vinhas, G. M., & Sarubbo, L. A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in microbiology, 8, 2027.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ebrahimi, E., Babaeipour, V., & Khanchezar, S. (2016). Effect of down-stream processing parameters on the mechanical properties of bacterial cellulose. Iranian Polymer Journal, 25(8), 739–746.

    Article  CAS  Google Scholar 

  12. Esa, F., Tasirin, S. M., & Abd Rahman, N. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113–119.

    Article  Google Scholar 

  13. Festucci-Buselli, R. A., Otoni, W. C., & Joshi, C. P. (2007). Structure, organization, and functions of cellulose synthase complexes in higher plants. Brazilian Journal of Plant Physiology, 19(1), 1–13.

    Article  CAS  Google Scholar 

  14. Gao, H., Sun, Q., Han, Z., Li, J., Liao, B., Hu, L., Huang, J., Zou, C., Jia, C., & Huang, J. (2020). Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydrate polymers, 227, 115323.

    Article  CAS  PubMed  Google Scholar 

  15. Hsieh, J.-T., Wang, M.-J., Lai, J.-T., & Liu, H.-S. (2016). A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. Journal of the Taiwan Institute of Chemical Engineers, 63, 46–51.

    Article  CAS  Google Scholar 

  16. Hussain, Z., Sajjad, W., Khan, T., & Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: A review. Cellulose, 26(5), 2895–2911.

    Article  CAS  Google Scholar 

  17. Jahan, F., Kumar, V., Rawat, G., & Saxena, R. (2012). Production of microbial cellulose by a bacterium isolated from fruit. Applied biochemistry and biotechnology, 167(5), 1157–1171.

    Article  CAS  PubMed  Google Scholar 

  18. Keshk SM, Razek TM, Sameshima K (2006) Bacterial cellulose production from beet molasses. African Journal of Biotechnology 5(17)

  19. Khodamoradi, N., Babaeipour, V., & Sirousazar, M. (2019). Bacterial cellulose/montmorillonite bionanocomposites prepared by immersion and in-situ methods: Structural, mechanical, thermal, swelling and dehydration properties. Cellulose, 26(13), 7847–7861.

    Article  CAS  Google Scholar 

  20. Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29(4), 189–195.

    Article  CAS  PubMed  Google Scholar 

  21. Naomi, R., Bt Hj Idrus, R., & Fauzi, M. B. (2020). Plant-vs. bacterial-derived cellulose for wound healing A review. International journal of environmental research and public health, 17(18), 6803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pa’e, N., Zahan, K. A., & Muhamad, I. I. (2011). Production of biopolymer from Acetobacter xylinum using different fermentation methods. International Journal of Engineering and Technology, 11(5), 90–98.

    Google Scholar 

  23. Park, J. K., Hyun, S. H., & Jung, J. Y. (2004). Conversion ofG. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnology and Bioprocess Engineering, 9(5), 383.

    Article  CAS  Google Scholar 

  24. Raghavendran, V., Asare, E., & Roy, I. (2020). Bacterial cellulose: Biosynthesis, production, and applications. Advances in Microbial Physiology, 77(77), 89.

    Article  CAS  PubMed  Google Scholar 

  25. Saejung, C., & Puensungnern, L. (2020). Evaluation of molasses-based medium as a low cost medium for carotenoids and fatty acid production by photosynthetic bacteria. Waste and Biomass Valorization, 11(1), 143–152.

    Article  CAS  Google Scholar 

  26. Seddiqi H, Oliaei E, Honarkar H, Jin J, Geonzon LC, Bacabac RG, Klein-Nulend J (2021) Cellulose and its derivatives: Towards biomedical applications. Cellulose:1–39

  27. Shezad, O., Khan, S., Khan, T., & Park, J. K. (2009). Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal of Chemical Engineering, 26(6), 1689–1692.

    Article  CAS  Google Scholar 

  28. Singhsa, P., Narain, R., & Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571–1581.

    Article  CAS  Google Scholar 

  29. Tan J, Jahim J, Wu T, Harun S, Mumtaz T (2016) Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes. In: IOP Conference Series: Earth and Environmental Science. vol 36. IOP Publishing, 012058

  30. Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V., & Koutinas, A. (2015). Bacterial cellulose production from industrial waste and by-product streams. International journal of molecular sciences, 16(7), 14832–14849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tyagi, N., & Suresh, S. (2016). Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: Optimization & characterization. Journal of Cleaner Production, 112, 71–80.

    Article  CAS  Google Scholar 

  32. Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate polymers, 219, 63–76.

    Article  CAS  PubMed  Google Scholar 

  33. Yanti NA, Ahmad SW, Muhiddin NH (2018) Evaluation of inoculum size and fermentation period for bacterial cellulose production from sago liquid waste. In: Journal of Physics: Conference Series. vol 1116. IOP Publishing, 052076

Download references

Author information

Authors and Affiliations

Authors

Contributions

Valiollah Babaeipour has designed and directed this research. Motahareh Rouhi has conducted experiments under supervisor Valiollah Babaeipour. Sirwan Khanchezar has written the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Valiollah Babaeipour.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Informed consent was obtained from all individual participants included in the research.

Consent to Publish

The all of authors consent to publish this study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 694 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi, M., Khanchezar, S. & Babaeipour, V. Economical Optimization of Industrial Medium Culture for Bacterial Cellulose Production. Appl Biochem Biotechnol 195, 2863–2881 (2023). https://doi.org/10.1007/s12010-022-04239-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04239-2

Keywords

Navigation