Skip to main content
Log in

Production of Microbial Cellulose by a Bacterium Isolated from Fruit

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study presents the production of bacterial cellulose (BC) by a bacterium isolated from a rotten fruit and its process optimization. Here, isolation and screening of potent cellulose producers were carried out from different natural sources, viz., soil, rotten fruits, and vegetables and vinegar. A total of 200 bacterial isolates were obtained, which were screened for cellulose production using Hestrin–Schramm medium. A novel and potent cellulose-producing bacterium was newly isolated from a rotten fruit and identified as Gluconacetobacter sp. F6 through 16S ribosomal DNA sequencing and morphological, cultural, and biochemical characteristics. After optimization of culture conditions, including pH, temperature, agitation, carbon/nitrogen sources, and inducers, the BC production was greatly increased from 0.52 to 4.5 g/l (8.65-fold increase). The optimal culture medium contained 1% (w/v) glucose, 1.5% (w/v) yeast extract, 0.5% (w/v) peptone, 0.27% (w/v) disodium hydrogen phosphate, 0.115% (w/v) citric acid, and 0.4% (w/v) ethanol. BC produced was analyzed for the presence of cellulose fibrils by epiflourescent microscopy using Calcofluor white stain and scanning electron microscopy and confirmed by NMR. There are very scanty reports about the optimization of BC production by bacteria isolated from rotten fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brown, R. M. (2004). Journal of Polymer Science: Part A: Polymer Chemistry, 42, 487–495.

    Article  CAS  Google Scholar 

  2. Lynd, L. R., Weimer, P. J., Vanzye, W. H., & Pretonius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  3. Jonas, R., & Farah, L. F. (1998). Polymer Degradation and Stability, 59, 101–106.

    Article  CAS  Google Scholar 

  4. Yoshinaga, F., Tonouchi, N., & Watanabe, K. (1997). Bioscience, Biotechnology, and Biochemistry, 61, 219–224.

    Article  CAS  Google Scholar 

  5. Chawla, P. R., Bajaj, I. B., Survase, S. A., & Rekha, S. S. (2009). Food Technology and Biotechnology, 47, 107–124.

    CAS  Google Scholar 

  6. Fontana, J. D., de Sousa, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., & Gallotti, B. J. (1990). Applied Biochemistry and Biotechnology, 4, 253–264.

    Article  Google Scholar 

  7. Alvarez, O. M., Patel, M., Booker, J., & Markowitz, L. (2004). Wounds, 16, 224–233.

    Google Scholar 

  8. Czaja, W., Kawecki, M., Krystynowicz, A., Wysota, K., Sakiel, S., Wroblewski, P. (2004), In: The 227th ACS National Meeting, Anaheim, CA, USA, 28 March–1 April.

  9. Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, R. M. (2006). Biomaterials, 27, 145–151.

    Article  CAS  Google Scholar 

  10. Shoda, M., & Sugano, Y. (2005). Biotechnology and Bioprocess Engineering, 10, 1–8.

    Article  CAS  Google Scholar 

  11. Legge, R. L. (1990). Biotechnology Advances, 8, 303–319.

    Article  CAS  Google Scholar 

  12. Shah, J., & Brown, R. M. (2005). Applied Microbiology and Biotechnology, 66, 352–355.

    Article  CAS  Google Scholar 

  13. Ross, P., Mayer, R., & Benziman, M. (1991). Microbiological Reviews, 55, 35–58.

    CAS  Google Scholar 

  14. Schramm, M., & Hestrin, S. (1954). Biochemical Journal, 56, 163–166.

    CAS  Google Scholar 

  15. Mondal, I. H., & Kai, A. (2001). Journal of Applied Polymer Science, 79, 1726–1734.

    Article  Google Scholar 

  16. Wee, Y., Kim, S., Yoon, S., & Ryn, H. (2011). African Journal of Biotechnology, 10, 16267–162276.

    CAS  Google Scholar 

  17. Ryu, H.W., Wee, Y.J., Kim, S.Y., Kim, J.N., & Yun, J.S. (2004) Korea patent application no. 10-2004-0104790.

  18. Toyosaki, H., Naritomi, T., Seto, A., Matsuoka, M., Tsuchida, T., & Yoshinaga, F. (1995). Bioscience Biotechnology & Biochemistry, 59, 1498–1502.

    Article  CAS  Google Scholar 

  19. Aydin, Y.A. & Deveci Aksoy, N. (2009) Proceedings of the World Congress on Engineering and Computer Science, Vol. 1.

  20. Park, J. K., Park, Y. H., & Jung, J. Y. (2003). Biotechnology and Bioprocess Engineering, 8, 83–88.

    Article  CAS  Google Scholar 

  21. Buchanan, R. E., & Gibbons, N. E. (1974). Bergey’s manual of determinative bacteriology (8th ed.). Baltimore: Williams and Wilkins.

    Google Scholar 

  22. Madigan, M. and Martinko, J. (2005) Brock biology of microorganism (11th edn). Upper Saddle River: Prentice Hall (ISBN 0-13-144329-1).

  23. Bielecki S., Krystynowicz, A., Turkiewicz, M. and Kalinowska, H. (2005) Biotechnology of polymers. From synthesis to patents. Weinheim: Wiley-VCH Verlag GmbH & Co.

  24. Monheit, J. E., Cowan, D. F., & Moore, D. G. (1984). Archives of Pathology & Laboratory Medicine, 108, 616–618.

    CAS  Google Scholar 

  25. Harrington, B. J., & Raper, K. B. (1968). Applied Microbiology, 16, 106–113.

    CAS  Google Scholar 

  26. Goh, W. H., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., & Rajeev, B. (2012). International Food Research Journal, 19, 153–158.

    CAS  Google Scholar 

  27. Krystynowicz, A., Czoya, W., Wiktorwska-Jezierska, A., Goncalves-Miskiecoicz, M., Turkiewicz, M., & Bielechi, S. (2002). Journal of Industrial Microbiology and Biotechnology, 29, 189–195.

    Article  CAS  Google Scholar 

  28. Klemm, D., Schumann, U., Udhardt, U., & Marsch, S. (2001). Progress in Polymer Science, 26, 1561–1599.

    Article  CAS  Google Scholar 

  29. Coban, E. P., & Bijik, H. (2011). African Journal of Biotechnology, 10, 5346–5354.

    CAS  Google Scholar 

  30. Watanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Cellulose, 5, 187–200.

    Article  CAS  Google Scholar 

  31. Kai, A., & Ping, X. U. (1994). Polymer, 35, 75–79.

    Article  CAS  Google Scholar 

  32. Son, H. J., Heo, M. S., Kim, Y. G., & Lee, S. J. (2001). Biotechnology and Applied Biochemistry, 33, 1–5.

    Article  CAS  Google Scholar 

  33. Naritomi, T., Kouda, T., Yano, H., & Yoshinaga, F. (1998). Journal of Fermentation and Bioengineering, 85, 89–95.

    Article  CAS  Google Scholar 

  34. Son, H. J., Kim, H. G., Kim, K. K., Kim, H. S., Kim, Y. G., & Lee, S. J. (2003). Bioresource Technology, 86, 215–219.

    Article  Google Scholar 

  35. Bae, S., Sugano, Y., & Shoda, M. (2004). Journal of Bioscience and Bioengineering, 97, 33–38.

    CAS  Google Scholar 

  36. Kongruang, S. (2008). Applied Biochemistry and Biotechnology, 4, 478–482.

    Google Scholar 

  37. Ben-Bassat, A., Bruner, R., Shoemaker, S., Aloni, Y., Wong, H., Johnson, D.C. and Neogi, A. N. (2002) US patent 6429002.

  38. Yamanaka, S. (1989). In H. Inagaki & G. O. Philips (Eds.), In cellulosics utilization—Research and rewards in cellulosics (pp. 175–181). London: Elsevier Science.

    Google Scholar 

  39. Toyosaki, H. Y., Kojima, T., Tsuchida, K., Oshino, H., Yamada, Y., & Yoshinaga, F. (1995). Journal of General and Applied Microbiology, 41b, 307–314.

    Article  Google Scholar 

  40. Kim, J. Y., Kim, J. N., Wee, Y. J., Park, D. H., & Ryu, H. W. (2007). Applied Biochemistry and Biotechnology, 137, 529–537.

    Article  Google Scholar 

  41. Lee, H. C., & Zhao, X. (1999). Biotechnology and Bioprocess Engineering, 4, 41–45.

    Article  CAS  Google Scholar 

  42. Fontana, J. D., Franco, V. C., de Souza, S. J., Lyra, I. N., & de Souza, A. M. (1991). Applied Biochemistry and Biotechnology, 28, 341–351.

    Article  Google Scholar 

  43. Galas, E., Krystynoowicz, A., Tarabasz-Szymanska, L., Pankiewicz, T., & Rzyska, M. (1999). Acta Biotechnologica, 19, 251.

    Article  CAS  Google Scholar 

  44. Ishikawa, A., Matsuoka, M., Tsuchida, T., & Yoshinaga, F. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 2259–2263.

    Article  CAS  Google Scholar 

  45. Fiedler, S., Füssel, M., & Sattler, K. (1989). Zentralblatt für Mikrobiologie, 144, 473–484.

    CAS  Google Scholar 

  46. Joris, K., Billiet, F., Drieghe, S., Brachx, D., & Vandamme, E. (1990). Meded Fac Landbouwwet Rijksuniv Gent, 55, 1563–1566.

    CAS  Google Scholar 

  47. Hestrin, S., & Schramm, M. (1954). Biochemical Journal, 58, 345–352.

    CAS  Google Scholar 

  48. Masaoka, S., Ohe, T., & Sakota, N. (1993). Journal of Fermentation and Bioengineering, 75, 18–22.

    Article  CAS  Google Scholar 

  49. Cannon, R. E., & Anderson, S. M. (1991). Critical Reviews in Microbiology, 17, 435–447.

    Article  CAS  Google Scholar 

  50. Romano, M., Franzosi, G., Seves, A., & Sora, S. (1989). Cellulose Chemistry & Technology, 23, 217–223.

    CAS  Google Scholar 

  51. Geyer, U., Heinze, T., Stein, A., Klemm, D., Marsch, S., Schumann, D., & Schmauder, H. P. (1994). International Journal of Biological Macromolecules, 16, 343–347.

    Article  CAS  Google Scholar 

  52. Pourramezan, G. Z., Roayaei, A. M., & Qezelbash, Q. R. (2009). Biotechnology, 8, 150–154.

    Article  CAS  Google Scholar 

  53. Hornung, M., Ludwig, M., Gerrard, A. M., & Schmauder, H. P. (2006). Engineering in Life Science, 6, 537–545.

    Article  CAS  Google Scholar 

  54. Ishihara, M., Matsunaga, M., Hayashi, N., & Tisler, V. (2002). Enzyme and Microbial Technology, 31, 986–991.

    Article  CAS  Google Scholar 

  55. Yang, Y. K., Park, S. H., Hwang, J. W., Pyun, Y. R., & Kim, Y. S. (1998). Journal of Fermentation and Bioengineering, 85, 312–317.

    Article  CAS  Google Scholar 

  56. Keshk, M. A. S. S., & Sameshima, K. (2005). African Journal of Biotechnology, 4, 478–482.

    CAS  Google Scholar 

  57. Jung, J. Y., Park, Y. H., & Park, J. K. (2003). Journal of Biotechnology and Bioengineering, 18, 94–99.

    Google Scholar 

  58. Oikawa, T., Ohtori, T., & Ameyama, M. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 331–332.

    Article  CAS  Google Scholar 

  59. Oikawa, T., Morino, T., & Ameyama, M. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 1564–1565.

    Article  CAS  Google Scholar 

  60. Hungund, B. S., & Gupta, S. G. (2010). African Journal of Biotechnology, 9, 5170–5172.

    CAS  Google Scholar 

  61. Kim, S. Y., Kim, J. N., Wee, Y. J., Park, D. H., & Ryu, H. W. (2006). Applied Biochemistry and Biotechnology, 131, 705–715.

    Article  Google Scholar 

  62. Schramm, M., Gromet, Z., & Hestrin, S. (1957). Nature, 179, 28–29.

    Article  CAS  Google Scholar 

  63. Heo, M. S., & Son, H. J. (2002). Biotechnology and Applied Biochemistry, 36, 41–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Saxena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahan, F., Kumar, V., Rawat, G. et al. Production of Microbial Cellulose by a Bacterium Isolated from Fruit. Appl Biochem Biotechnol 167, 1157–1171 (2012). https://doi.org/10.1007/s12010-012-9595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9595-x

Keywords

Navigation