Skip to main content
Log in

Efficient Biotransformation of Sclareol to Sclareolide by Filobasidium magnum JD1025

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a newly isolated strain Filobasidium magnum JD1025 was investigated for its production of sclareolide, which was verified to be a valuable raw material in various industrial fields. Together with a comprehensive analysis of the genome sequence, effective fermentation method to convert sclareol to sclareolide via the isolated strain was explored and optimized by taking the selected co-solvent and nitrogen source into account. The results showed that the final conversion rate could be achieved at 88.79 ± 1.06% with the initial sclareol concentration of 30 g·L-1 after 72 h in baffled flask. The corresponding yield concentration of sclareolide was 21.62 ± 0.26 g·L-1 and the conversion rate per unit thallus attained to 6.11 ± 0.06 % g-1·L-1. Overall, the current study suggested a valid method for the application of Filobasidium magnum JD1025 as bio-transformer to produce sclareolide from sclareol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Upar, K. B., Mishra, S. J., Nalawade, S. P., Singh, S. A., & Bhat, S. V. (2009). Efficient enantioselective synthesis of (+)-sclareolide and (+)-tetrahydroactinidiolide: chiral LBA-induced biomimetic cyclization. Tetrahedron Asymmetry, 20(14), 1637–1640.

    Article  CAS  Google Scholar 

  2. Martins, M. P., Ouazzani, J., Arcile, G., Jeller, A. H., Lima, J. P. F. D., Seleghim, M. H. R., Oliveira, A. L. L., Debonsi, H. M., Venancio, T., & Yokoya, N. S. (2015). Biohydroxylation of (-)-ambrox®, (-)-sclareol, and (+)-sclareolide by whole cells of brazilian marine-derived fungi. Marine Biotechnology, 17(2), 211–218.

    Article  CAS  Google Scholar 

  3. Castro, J. M., Salido, S., Sánchez, A., & Altarejos, J. (2010). Synthesis of (+)-sclareolide based on a cyclic enol ether ring contraction induced by peroxy acids. Synlett, 2010(18), 2747–2750.

    Article  Google Scholar 

  4. Frija, Luís. M. . T., Frade, R., & Afonso, C. (2011). Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chemical Reviews, 111(8), 4418–4452.

    Article  CAS  Google Scholar 

  5. Duca, G., Aricu, A., Kuchkova, K., Secara, E., Barba, A., Dragalin, I., et al. (2018). Synthesis, structural elucidation and biological evaluations of new guanidine-containing terpenoids as anticancer agents. Natural Product Research, 33(21), 3052–3056.

    Article  Google Scholar 

  6. Chen, S., Wang, Y., Zhang, W., Dong, M., & Zhang, J. (2017). Sclareolide enhances gemcitabineinduced cell death through mediating the nicd and gli1 pathways in gemcitabineresistant human pancreatic cancer. Molecular Medicine Reports, 15(4), 1461–1470.

    Article  CAS  Google Scholar 

  7. Sultana, Ni., & Saify, Z. S. (2013). Enzymatic biotransformation of terpenes as bioactive agents. Journal of Enzyme Inhibition & Medicinal Chemistry, 28(6), 1113–1128.

    Article  CAS  Google Scholar 

  8. Chen, Q., Tang, K., & Guo, Y. (2019). Discovery of sclareol and sclareolide as filovirus entry inhibitors. Journal of Asian Natural Products Research, 22(5), 1–10.

    CAS  Google Scholar 

  9. Krutmann, J., Meyer, I., Johncock, W., Schmaus, G., & Le Maire, M. (2017) Cosmetic compositions comprising sclareolide. World Intellectual Property Organization, WO 2017/215729 A1.

  10. Völler, J. S. (2020). Expedient route to meroterpenoids. Nature Catalysis, 3(2), 92.

    Article  Google Scholar 

  11. Farooq, A., & Tahara, S. (2000). Oxidative metabolism of ambrox and sclareolide by botrytis cinerea. Zeitschrift Fur Naturforschung C A Journal of Biosciences, 55(5–6), 341–346.

    Article  CAS  Google Scholar 

  12. Serra, S., Fuganti, C., & Brenna, E. (2005). Biocatalytic preparation of natural flavours and fragrances. Trends in Biotechnology, 23(4), 193–198.

    Article  CAS  Google Scholar 

  13. Choudhary, M. I., Musharraf, S. G., Sami, A., & Atta-ur-Rahman. (2004). Microbial transformation of sesquiterpenes, (-)-Ambrox and (+) -sclareolide. Helvetica Chimica Acta, 87(10), 2685–2694.

    Article  CAS  Google Scholar 

  14. Barrero, A. F., Alvarez-Manzaneda, E. J., Chahboun, R., & Arteaga, A. F. (2004). Degradation of the side chain of (−) -sclareol: a very short synthesis of nor-ambreinolide and ambrox. Synthetic Communications, 34(19), 3631–3643.

    Article  CAS  Google Scholar 

  15. Koga, T., Aoki, Y., Hirose, T., & Nohira, H. (1998). Resolution of sclareolide as a key intermediate for the synthesis of ambrox®. Tetrahedron Asymmetry, 9(21), 3819–3823.

    Article  CAS  Google Scholar 

  16. Xiang, L., Chen, K., Wu, B., & Min, Z. (2016). Recycling of sclareolide in the crystallization mother liquid of sclareolide by adsorption and chromatography. International Journal of Chemical and Molecular Engineering, 10(2), 187–192.

    Google Scholar 

  17. Barton, D., Parekh, S. I., Taylor, D. K., & Tse, C. L. (1994). An efficient synthesis of (-)-dodecahydro-3a,6,6,9a-tetramethylnaphtho[2,1-b] furan from (-)-sclareol. Cheminform, 35(32), 5801–5804.

    CAS  Google Scholar 

  18. Schneider, M., Stalberg, T., & Gerke, T. (1996). Process for the production of sclareolide, United States Patent, US 5,525,728A.

  19. Gerke, T., & Bruns, K. (1993). Process for the production of sclareolide. United States Patent, US 5,247,100 A.

  20. Maurey, H. W., Schumacher, J. N., & Teague, J. (1962). Two stage oxidation of sclareol. United States Patent, US3050532 A.

  21. Farbood, M. I., Morris, J. A., & Downey, A. E. (1990). Process for producing diol and lactone and microorganisms capable of same. United States Patent, US04970163 A.

  22. Farbood, M. I., Morris, J. A., & Downey, A. E. (1991). Process and means for producing diol and lactone. European Patent, EP0419026A1.

  23. Arturo, C., Teresa, R., & Guillermo, D. (2011). Biotransformation of sclareolide by filamentous fungi: cytotoxic evaluations of the derivatives. Journal of the Brazilian Chemical Society, 22(6), 1177–1182.

    Article  Google Scholar 

  24. Chitsazan, M. H., Bina, E., & Asgarpanah, J. (2014). Essential oil composition of the endemic species pycnocycla bashagardiana mozaff. Journal of Essential Oil Research, 26(2), 141–145.

    Article  Google Scholar 

  25. Zafar, I., Fatima, A., Khan, S. J., Rehman, Z., & Mehmud, S. (2010). GC-MS studies of needles essential oil of pinus roxburghaii and their antimicrobial activity from. Electronic Journal of Environmental Agricultural & Food Chemistry, 9(3), 468–473.

    CAS  Google Scholar 

  26. Zhou, P., Fang, Y. K., Yao, H. K., Li, H., Wang, G., & Liu, Y. P. (2018). Efficient biotransformation of phytosterols to dehydroepiandrosterone by Mycobacterium sp. Applied Biochemistry and Biotechnology, 186(4), 1–11.

    Google Scholar 

  27. Ma, M., Feng, J., Wang, D., Chen, S. W., & Xu, H. (2018). Synthesis and antifungal activity evaluation of drimane-amide derivatives from sclareol. Combinatorial Chemistry & High Throughput Screening, 21(7), 501–509.

    Article  CAS  Google Scholar 

  28. Birney, E., Clamp, M., & Durbin, R. (2004). GeneWise and Genomewise. Genome Res, 14(5), 988–95.

    Article  CAS  Google Scholar 

  29. Kuznetsov, A., & Bollin, C. J. (2021). NCBI Genome Workbench: desktop software for comparative genomics, visualization, and GenBank data submission. In Multiple Sequence Alignment. Humana, New York, NY 261-295

  30. Kyrikou, I., Georgopoulos, A., Hatziantoniou, S., Mavromoustakos, T., & Demetzos, C. (2005). A comparative study of the effects of cholesterol and sclareol, a bioactive labdane type diterpene, on phospholipid bilayers. Chemistry and Physics of Lipids, 133(2), 125–134.

    Article  CAS  Google Scholar 

  31. Ruan, Y., Zhu, L., & Qi, L. (2015). Improving the electro-transformation efficiency of corynebacterium glutamicum by weakening its cell wall and increasing the cytoplasmic membrane fluidity. Biotechnology Letters, 37(12), 2445–2452.

    Article  CAS  Google Scholar 

  32. Feng, L., & Zhu, L. (2014). Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport. Chemosphere, 107, 58–64.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research & Developmental Program of China (2018YFA0900300 and 2021YFC2100300).

Author information

Authors and Affiliations

Authors

Contributions

Y. K. Fang: investigation, formal analysis, and writing—original draft. Z. L. Wang: methodology, validation, and investigation. Y. Shi: writing—review and editing. L. Liu: methodology, validation, and investigation. J. H. Wang: data curation and visualization. T. Yang: visualization and software. X. Yu: resources and conceptualization. Z. H. Gu: methodology and software. L. Zhang: funding acquisition, project administration, and methodology. We confirm that this manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in this manuscript has been approved by all of us.

Corresponding authors

Correspondence to Yu Xin or Liang Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Wang, Z., Shi, Y. et al. Efficient Biotransformation of Sclareol to Sclareolide by Filobasidium magnum JD1025. Appl Biochem Biotechnol 195, 1184–1196 (2023). https://doi.org/10.1007/s12010-022-04225-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04225-8

Keywords

Navigation