Skip to main content
Log in

Exo-III Enzyme and DNAzyme-Assisted Dual Signal Recycles for Sensitive Analysis of Exosomes by Using Personal Glucose Meter

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Exosome plays a crucial role in regulating intercellular communication during atherosclerosis development. However, sensitive and portable exosome detection remains a huge challenge. Herein, a personal glucose meter (PGM)-based exosomes detection approach has been proposed that allows detection of exosomes with a high sensitivity and reproducibility. In this method, a catch probe, which is composed of CD63 aptamer and blocker sequence, is utilized for the specific identification of exosomes. The blocker sequence binds with H probe to initiate the Exo-III-assisted signal recycles to generate numerous DNAzyme sequences. Under the assistance of the substrate, DNAzyme forms its active secondary structure to generate gap site in substrate, releasing a linker to conjugate sucrase to streptavidin magnetic beads (SMBs). After removing unbound sucrase, the SMB-linker-sucrase complex is used to catalyze sucrose to glucose, which can be read by PGMs. Based on this, the method exhibits a wide detection range and a low limit of detection, holding a promising prospect for the analysis of exosomes and screening atherosclerosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Wang, C., Li, Z., Liu, Y., & Yuan, L. (2021). Exosomes in atherosclerosis: Performers, bystanders, biomarkers, and therapeutic targets. Theranostics, 11, 3996–4010.

    Article  CAS  Google Scholar 

  2. Wang, Y., Xie, Y., Zhang, A., Wang, M., Fang, Z., & Zhang, J. (2019). Exosomes: An emerging factor in atherosclerosis. Biomedicine & Pharmacotherapy, 115, 108951.

    Article  CAS  Google Scholar 

  3. Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., Zhu, J., Ma, L., Guo, J., Shi, H., Zou, Y., & Ge, J. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. Journal of Cellular and Molecular Medicine, 20, 2318–2327.

    Article  CAS  Google Scholar 

  4. Henning, R. J. (2021). Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology. Journal of Cardiovascular Translational Research, 14, 195–212.

    Article  Google Scholar 

  5. Ling, H., Guo, Z., Tan, L., Cao, Q., & Song, C. (2021). Stem cell-derived exosomes: Role in the pathogenesis and treatment of atherosclerosis. International Journal of Biochemistry & Cell Biology, 130, 105884.

    Article  CAS  Google Scholar 

  6. Zheng, D., Huo, M., Li, B., Wang, W., Piao, H., Wang, Y., Zhu, Z., Li, D., Wang, T., & Liu, K. (2020). The role of exosomes and exosomal microRNA in cardiovascular disease. Front Cell Dev Biol, 8, 616161.

    Article  Google Scholar 

  7. Lin, B., Yang, J., Song, Y., Dang, G., & Feng, J. (2021). Exosomes and atherogenesis. Front Cardiovasc Med, 8, 738031.

    Article  CAS  Google Scholar 

  8. Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., & Lyden, D. (2016). Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell, 30, 836–848.

    Article  CAS  Google Scholar 

  9. Maacha, S., Bhat, A. A., Jimenez, L., Raza, A., Haris, M., Uddin, S., & Grivel, J. C. (2019). Extracellular vesicles-mediated intercellular communication: Roles in the tumor microenvironment and anti-cancer drug resistance. Molecular Cancer, 18, 55.

    Article  Google Scholar 

  10. Paone, S., Baxter, A. A., Hulett, M. D., & Poon, I. K. H. (2019). Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cellular and Molecular Life Sciences, 76, 1093–1106.

    Article  CAS  Google Scholar 

  11. Vanhaverbeke, M., Gal, D., & Holvoet, P. (2017). Functional role of cardiovascular exosomes in myocardial injury and atherosclerosis. Advances in Experimental Medicine and Biology, 998, 45–58.

    Article  CAS  Google Scholar 

  12. Huber, H. J., & Holvoet, P. (2015). Exosomes: Emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Current Opinion in Lipidology, 26, 412–419.

    Article  CAS  Google Scholar 

  13. Zhu, C., Li, L., Wang, Z., Irfan, M., & Qu, F. (2020). Recent advances of aptasensors for exosomes detection. Biosensors & Bioelectronics, 160, 112213.

    Article  CAS  Google Scholar 

  14. Zhang, L., Gu, C., Wen, J., Liu, G., Liu, H., & Li, L. (2021). Recent advances in nanomaterial-based biosensors for the detection of exosomes. Analytical and Bioanalytical Chemistry, 413, 83–102.

    Article  CAS  Google Scholar 

  15. Khodashenas, S., Khalili, S., & Forouzandeh Moghadam, M. (2019). A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnology Letters, 41, 523–531.

    Article  CAS  Google Scholar 

  16. Pan, Y., Wang, L., Deng, Y., Wang, M., Peng, Y., Yang, J., & Li, G. (2020). A simple and sensitive method for exosome detection based on steric hindrance-controlled signal amplification. Chemical Communications (Cambridge, England), 56, 13768–13771.

    Article  CAS  Google Scholar 

  17. Yang, F., Liao, X., Tian, Y. & Li, G. (2017). Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies. Biotechnol Journal, 12, 1600699

  18. Ibsen, S. D., Wright, J., Lewis, J. M., Kim, S., Ko, S. Y., Ong, J., Manouchehri, S., Vyas, A., Akers, J., Chen, C. C., Carter, B. S., Esener, S. C., & Heller, M. J. (2017). Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano, 11, 6641–6651.

    Article  CAS  Google Scholar 

  19. Koritzinsky, E. H., Street, J. M., Star, R. A., & Yuen, P. S. (2017). Quantification of Exosomes. Journal of Cellular Physiology, 232, 1587–1590.

    Article  CAS  Google Scholar 

  20. Zhao, X., Luo, C., Mei, Q., Zhang, H., Zhang, W., Su, D., Fu, W., & Luo, Y. (2020). Aptamer-cholesterol-mediated proximity ligation assay for accurate identification of exosomes. Analytical Chemistry, 92, 5411–5418.

    Article  CAS  Google Scholar 

  21. Zhao, X., Yuan, Y., Liu, X., Mao, F., Xu, G., & Liu, Q. (2022). A versatile platform for sensitive and label-free identification of biomarkers through an Exo-III-assisted cascade signal amplification strategy. Analytical Chemistry, 94, 2298–2304.

    Article  CAS  Google Scholar 

  22. Zhao, X., Zeng, L., Mei, Q., & Luo, Y. (2020). Allosteric probe-initiated wash-free method for sensitive extracellular vesicle detection through dual cycle-assisted CRISPR-Cas12a. ACS Sens, 5, 2239–2246.

    Article  CAS  Google Scholar 

  23. Zhao, X., Zhang, W., Qiu, X., Mei, Q., Luo, Y., & Fu, W. (2020). Rapid and sensitive exosome detection with CRISPR/Cas12a. Analytical and Bioanalytical Chemistry, 412, 601–609.

    Article  CAS  Google Scholar 

  24. Gong, S., Li, J., Pan, W., Li, N., & Tang, B. (2021). Duplex-specific nuclease-assisted CRISPR-Cas12a strategy for microRNA detection using a personal glucose meter. Analytical Chemistry, 93, 10719–10726.

    Article  CAS  Google Scholar 

  25. Ahn, J. K., Kim, H. Y., Park, K. S., & Park, H. G. (2018). A personal glucose meter for label-free and washing-free biomolecular detection. Analytical Chemistry, 90, 11340–11343.

    Article  CAS  Google Scholar 

  26. Chen, G. Y., Zhang, H., & Yang, F. Q. (2021). A simple and portable method for beta-glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Analytica Chimica Acta, 1142, 19–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial and technical support from The Third Affiliated Hospital of Chongqing Medical University.

Author information

Authors and Affiliations

Authors

Contributions

L.L financed the research. H.W. and L.L designed and wrote the manuscript. H.W. performed experiments. S.H, Z.X., D.X. and L.Y. assisted data analysis.

Corresponding author

Correspondence to Li Li.

Ethics declarations

Ethics Approval

Permission from the Institutional Animal Ethical Committee was received before making these experiments.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Su, H., Zeng, X. et al. Exo-III Enzyme and DNAzyme-Assisted Dual Signal Recycles for Sensitive Analysis of Exosomes by Using Personal Glucose Meter. Appl Biochem Biotechnol 195, 861–870 (2023). https://doi.org/10.1007/s12010-022-04171-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04171-5

Keywords

Navigation