Skip to main content

Advertisement

Log in

Recent Advances In Microbe-Photocatalyst Hybrid Systems for Production of Bulk Chemicals: A Review

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Solar-driven biocatalysis technologies can combine inorganic photocatalytic materials with biological catalysts to convert CO2, light, and water into chemicals, offering the promise of high energy efficiency and a broader product scope than that of natural photosynthesis. Solar energy is the most abundant renewable energy source on earth, but it cannot be directly utilized by current industrial microorganisms. Therefore, the establishment of a solar-driven bio-catalysis platform, a bridge between solar energy and heterotrophic microorganisms, can dramatically increase carbon flux in biomanufacturing systems and consequently may revolutionize the biorefinery. This review first discusses the main applications of microbe-photocatalyst hybrid (MPH) systems in biorefinery processes. Then, various strategies to improve the electron transfer by microorganisms at the inorganic photocatalytic material interface are discussed, especially biohybrid systems based on autotrophic or heterotrophic bacteria and photocatalytic materials. Finally, we discuss the current challenges and offer potential solutions for the development of MPH systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Stephanopoulos, G. (2007). Challenges in engineering microbes for biofuels production. Science, 315(5813), 801–804. https://doi.org/10.1126/science.1139612

    Article  CAS  Google Scholar 

  2. Kerr, R. A. (2007). Global warming is changing the world. Science, 316(5822), 188–190. https://doi.org/10.1126/science.316.5822.188

    Article  CAS  Google Scholar 

  3. Su, L., & Ajo-Franklin, C. M. (2019). Reaching full potential: Bioelectrochemical systems for storing renewable energy in chemical bonds. Current Opinion in Biotechnology., 57, 66–72. https://doi.org/10.1016/j.copbio.2019.01.018

    Article  CAS  Google Scholar 

  4. Sundstrom V, editor SOLAR Energy conversion - Natural to artificiaL. Conference on the NATO Advanced Study Institute on Bio-Photonics: Spectroscopy, Imaging, Sensing, and Manipulation; 2009 2011 Jul 02–17; Erice, ITALY2011.

  5. Blankenship, R. E., Tiede, D. M., Barber, J., Brudvig, G. W., Fleming, G., Ghirardi, M., et al. (2011). Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 332(6031), 805–809. https://doi.org/10.1126/science.1200165

    Article  CAS  Google Scholar 

  6. Zhu, X.-G., Long, S. P., & Ort, D. R. (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology., 19(2), 153–159. https://doi.org/10.1016/j.copbio.2008.02.004

    Article  CAS  Google Scholar 

  7. Gassler, T., Sauer, M., Gasser, B., Egermeier, M., Troyer, C., Causon, T., et al. (2020). The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nature Biotechnology., 38(2), 210–216. https://doi.org/10.1038/s41587-019-0363-0

    Article  CAS  Google Scholar 

  8. Xiao, K., Tsang, T. H., Sun, D., Liang, J., Zhao, H., Jiang, Z., et al. (2021). Interfacing iodine-doped hydrothermally carbonized carbon with Escherichia coli through an “Add-on” Mode for enhanced light-driven hydrogen production. Advanced Energy Materials, 11(21). https://doi.org/10.1002/aenm.202100291

  9. Wei, W., Sun, P., Li, Z., Song, K., Su, W., Wang, B., et al. (2018). A surface-display biohybrid approach to light-driven hydrogen production in air. Science Advances, 4(2). https://doi.org/10.1126/sciadv.aap9253

  10. Nichols, E. M., Gallagher, J. J., Liu, C., Su, Y., Resasco, J., Yu, Y., et al. (2015). Hybrid bioinorganic approach to solar-to-chemical conversion. Proceedings of the National Academy of Sciences of the United States of America., 112(37), 11461–11466. https://doi.org/10.1073/pnas.1508075112

    Article  CAS  Google Scholar 

  11. Sahoo, P. C., Pant, D., Kumar, M., Puri, S. K., & Ramakumar, S. S. V. (2020). Material-microbe interfaces for solar-driven CO2 Bioelectrosynthesis. Trends in Biotechnology., 38(11), 1245–1261. https://doi.org/10.1016/j.tibtech.2020.03.008

    Article  CAS  Google Scholar 

  12. Sakimoto, K. K., Zhang, S. J., & Yang, P. (2016). Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system. Nano Letters., 16(9), 5883–5887. https://doi.org/10.1021/acs.nanolett.6b02740

    Article  CAS  Google Scholar 

  13. Zuo, W., Yu, Y., Huang, H. (2021). Making waves: Microbe-photocatalyst hybrids may provide new opportunities for treating heavy metal polluted wastewater. Water Research, 195. https://doi.org/10.1016/j.watres.2021.116984

  14. Ma, H. H., Imran, M., Dang, Z., Hu, Z. (2018). Growth of metal halide perovskite, from nanocrystal to micron-scale crystal: A review. Crystals8(5). https://doi.org/10.3390/cryst8050182

  15. Cheng, W.-H., Richter, M. H., May, M. M., Ohlmann, J., Lackner, D., Dimroth, F., et al. (2018). Monolithic photoelectrochemical device for direct water splitting with 19% Efficiency. Acs Energy Letters., 3(8), 1795–800. https://doi.org/10.1021/acsenergylett.8b00920

    Article  CAS  Google Scholar 

  16. Zhou, X., Liu, R., Sun, K., Chen, Y., Verlage, E., Francis, S. A., et al. (2016). Solar-Driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III-V Tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. Acs Energy Letters., 1(4), 764–770. https://doi.org/10.1021/acsenergylett.6b00317

    Article  CAS  Google Scholar 

  17. Jia, J., Seitz, L. C., Benck, J. D., Huo, Y., Chen, Y., Ng, J. W. D, et al. (2016). Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nature Communications, 7. https://doi.org/10.1038/ncomms13237

  18. LaBelle, E. V., Marshall, C. W., & May, H. D. (2020). Microbiome for the electrosynthesis of chemicals from carbon dioxide. Accounts of Chemical Research., 53(1), 62–71. https://doi.org/10.1021/acs.accounts.9b00522

    Article  CAS  Google Scholar 

  19. Li, H., Opgenorth, P. H., Wernick, D. G., Rogers, S., Wu, T.-Y., Higashide, W., et al. (2012). Integrated Electromicrobial conversion of CO2 to higher alcohols. Science., 335(6076), 1596. https://doi.org/10.1126/science.1217643

    Article  CAS  Google Scholar 

  20. Li, X., Sun, H., Mao, X., Lao, Y., & Chen, F. (2020). Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles. Acs Sustainable Chemistry & Engineering, 8(20), 7600–7608. https://doi.org/10.1021/acssuschemeng.0c00315

    Article  CAS  Google Scholar 

  21. Forster, J., Famili, I., Palsson, B. O., & Nielsen, J. (2003). Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics : A Journal of Integrative Biology, 7(2), 193–202. https://doi.org/10.1089/153623103322246584

    Article  Google Scholar 

  22. Herrgard, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., et al. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 26(10), 1155–1160. https://doi.org/10.1038/nbt1492

    Article  CAS  Google Scholar 

  23. Guo, J., Suastegui, M., Sakimoto, K. K., Moody, V. M., Xiao, G., Nocera, D. G., et al. (2018). Light-driven fine chemical production in yeast biohybrids. Science, 362(6416), 813–816. https://doi.org/10.1126/science.aat9777

    Article  CAS  Google Scholar 

  24. Fang, X., Kalathil, S., & Reisner, E. (2020). Semi-biological approaches to solar-to-chemical conversion. Chemical Society Reviews, 49(14), 4926–4952. https://doi.org/10.1039/c9cs00496c

    Article  CAS  Google Scholar 

  25. Xiao, K., Liang, J., Wang, X., Hou, T., Ren, X., Yin, P., et al. (2022). Panoramic insights into semi-artificial photosynthesis: Origin, development, and future perspective. Energy & Environmental Science, 15(2), 529–549. https://doi.org/10.1039/d1ee03094a

    Article  CAS  Google Scholar 

  26. Sakimoto, K. K., Kornienko, N., Cestellos-Blanco, S., Lim, J., Liu, C., & Yang, P. (2018). Physical biology of the materials-microorganism interface. Journal of the American Chemical Society, 140(6), 1978–1985. https://doi.org/10.1021/jacs.7b11135

    Article  CAS  Google Scholar 

  27. Cestellos-Blanco, S., Kim, J. M., Watanabe, N. G., Chan, R. R., Yang, P. (2021). Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion. Iscience, 24(9). https://doi.org/10.1016/j.isci.2021.102952

  28. Moreno-Garcia, L., Adjalle, K., Barnabe, S., & Raghavan, G. S. V. (2017). Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renewable & Sustainable Energy Reviews, 76, 493–506. https://doi.org/10.1016/j.rser.2017.03.024

    Article  Google Scholar 

  29. Wei, L., Wang, Q., Xin, Y., Lu, Y., & Xu, J. (2017). Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. Algal Research-Biomass Biofuels and Bioproducts, 27, 366–375. https://doi.org/10.1016/j.algal.2017.07.023

    Article  Google Scholar 

  30. de Mooij, T., Janssen, M., Cerezo-Chinarro, O., Mussgnug, J. H., Kruse, O., Ballottari, M., et al. (2015). Antenna size reduction as a strategy to increase biomass productivity: A great potential not yet realized. Journal of Applied Phycology, 27(3), 1063–1077. https://doi.org/10.1007/s10811-014-0427-y

    Article  CAS  Google Scholar 

  31. Shin, W.-S., Lee, B., Jeong, B.-R., Chang, Y. K., & Kwon, J.-H. (2016). Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. Journal of Applied Phycology, 28(6), 3193–202. https://doi.org/10.1007/s10811-016-0874-8

    Article  CAS  Google Scholar 

  32. Wang, W., Yu, L.-J., Xu, C., Tomizaki, T., Zhao, S., Umena, Y., et al. (2019). Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science, 363(6427), eaav0365. https://doi.org/10.1126/science.aav0365

    Article  CAS  Google Scholar 

  33. Gronenberg, L. S., Marcheschi, R. J., & Liao, J. C. (2013). Next generation biofuel engineering in prokaryotes. Current Opinion in Chemical Biology, 17(3), 462–471. https://doi.org/10.1016/j.cbpa.2013.03.037

    Article  CAS  Google Scholar 

  34. Cheng, S., Xing, D., Call, D. F., & Logan, B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10), 3953–3958. https://doi.org/10.1021/es803531g

    Article  CAS  Google Scholar 

  35. Ye, J., Yu, J., Zhang, Y., Chen, M., Liu, X., Zhou, S., et al. (2019). Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Applied Catalysis B-Environmental, 257. https://doi.org/10.1016/j.apcatb.2019.117916

  36. Sakimoto, K. K., Wong, A. B., & Yang, P. (2016). Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 351(6268), 74–77. https://doi.org/10.1126/science.aad3317

    Article  CAS  Google Scholar 

  37. Kornienko, N., Sakimoto, K. K., Herlihy, D. M., Nguyen, S. C., Alivisatos, A. P., Harris, C. B., et al. (2016). Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proceedings of the National Academy of Sciences of the United States of America, 113(42), 11750–11755. https://doi.org/10.1073/pnas.1610554113

    Article  CAS  Google Scholar 

  38. Zhang, R., He, Y., Yi, J., Zhang, L., Shen, C., Liu, S., et al. (2020). Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system. Chem, 6(1), 234–249. https://doi.org/10.1016/j.chempr.2019.11.002

    Article  CAS  Google Scholar 

  39. Jin, S., Jeon, Y., Jeon, M. S., Shin, J., Song, Y., Kang, S., et al. (2021). Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences of the United States of America, 118(9). https://doi.org/10.1073/pnas.2020552118

  40. Zhang, H., Liu, H., Tian, Z., Lu, D., Yu, Y., Cestellos-Blanco, S., et al. (2018). Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nature Nanotechnology, 13(10), 900–905. https://doi.org/10.1038/s41565-018-0267-z

    Article  CAS  Google Scholar 

  41. Rowe, S. F., Le Gall, G., Ainsworth, E. V., Davies, J. A., Lockwood, C. W. J., Shi, L., et al. (2017). Light-driven H-2 evolution and C=C or C=O Bond hydrogenation by shewanella oneidensis: A versatile strategy for photocatalysis by nonphotosynthetic microorganisms. Acs Catalysis, 7(11), 7558–7566. https://doi.org/10.1021/acscatal.7b02736

    Article  CAS  Google Scholar 

  42. Chen, M., Zhou, X.-F., Yu, Y.-Q., Liu, X., Zeng, R.J.-X., Zhou, S.-G., et al. (2019). Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Environment International, 127, 353–60. https://doi.org/10.1016/j.envint.2019.03.045

    Article  CAS  Google Scholar 

  43. Xu, M., Tremblay, P.-L., Jiang, L., & Zhang, T. (2019). Stimulating bioplastic production with light energy by coupling Ralstonia eutropha with the photocatalyst graphitic carbon nitride. Green Chemistry, 21(9), 2392–2400. https://doi.org/10.1039/c8gc03695k

    Article  CAS  Google Scholar 

  44. Tremblay, P-L., Xu, M., Chen, Y., Zhang, T. (2020). Nonmetallic abiotic-biological hybrid photocatalyst for visible water splitting and carbon dioxide reduction. Iscience, 23(1). https://doi.org/10.1016/j.isci.2019.100784

  45. Venkidusamy, K., Megharaj, M., Schroeder, U., Karouta, F., Mohan, S. V., & Naidu, R. (2015). Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. Rsc Advances, 5(122), 100790–100798. https://doi.org/10.1039/c5ra08742b

    Article  CAS  Google Scholar 

  46. Huang, L., Liu, X., Zhang, Z., Ye, J., Rensing, C., Zhou, S., et al. (2022). Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. Isme Journal, 16(2), 370–377. https://doi.org/10.1038/s41396-021-01078-7

    Article  CAS  Google Scholar 

  47. Guo, L., Ding, S., Liu, Y., Gao, C., Hu, G., Song, W., et al. (2022). Enhancing tryptophan production by balancing precursors in Escherichia coli. Biotechnology and Bioengineering, 119(3), 983–993. https://doi.org/10.1002/bit.28019

    Article  CAS  Google Scholar 

  48. Yang, D., Park, S. Y., Park, Y. S., Eun, H., & Lee, S. Y. (2020). Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 38(7), 745–765. https://doi.org/10.1016/j.tibtech.2019.11.007

    Article  CAS  Google Scholar 

  49. Qu, L., Xiu, X., Sun, G., Zhang, C., Yang, H., Liu, Y., et al. (2022). Engineered yeast for efficient de novo synthesis of 7-dehydrocholesterol. Biotechnology and Bioengineering, 119(5), 1278–1289. https://doi.org/10.1002/bit.28055

    Article  CAS  Google Scholar 

  50. Wang, B., Zeng, C., Chu, K. H., Wu, D., Yip, H. Y., Ye, L., et al. (2017). Enhanced Biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles. Advanced Energy Materials, 7(20). https://doi.org/10.1002/aenm.201700611

  51. Hu, G., Li, Z., Ma, D., Ye, C., Zhang, L., Gao, C., et al. (2021). Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nature Catalysis, 4(5), 395–406. https://doi.org/10.1038/s41929-021-00606-0

    Article  CAS  Google Scholar 

  52. Dunleavy, R., Lu, L., Kiely, C. J., McIntosh, S., & Berger, B. W. (2016). Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5275–5280. https://doi.org/10.1073/pnas.1523633113

    Article  CAS  Google Scholar 

  53. Choi, Y., Park, T. J., Lee, D. C., & Lee, S. Y. (2018). Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5944–5949. https://doi.org/10.1073/pnas.1804543115

    Article  CAS  Google Scholar 

  54. Saldrnoto, K. K., Kornienko, N., & Yang, P. (2017). Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Accounts of Chemical Research, 50(3), 476–481. https://doi.org/10.1021/acs.accounts.6b00483

    Article  CAS  Google Scholar 

  55. Hu, Z., Shen, Z., & Yu, J. C. (2017). Converting carbohydrates to carbon-based photocatalysts for environmental treatment. Environmental Science & Technology, 51(12), 7076–7083. https://doi.org/10.1021/acs.est.7b00118

    Article  CAS  Google Scholar 

  56. Wang, X., Saba, T., Yiu, H. H. P., Howe, R. F., Anderson, J. A., & Shi, J. (2017). Cofactor NAD(P)H Regeneration inspired by heterogeneous pathways. Chem, 2(5), 621–654. https://doi.org/10.1016/j.chempr.2017.04.009

    Article  CAS  Google Scholar 

  57. Suastegui, M., Ng, C. Y., Chowdhury, A., Sun, W., Cao, M., House, E., et al. (2017). Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metabolic Engineering, 42, 134–144. https://doi.org/10.1016/j.ymben.2017.06.008

    Article  CAS  Google Scholar 

  58. Patakova, P., Linhova, M., Rychtera, M., Paulova, L., & Melzoch, K. (2013). Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnology Advances, 31(1), 58–67. https://doi.org/10.1016/j.biotechadv.2012.01.010

    Article  CAS  Google Scholar 

  59. Wang, B., Chen, C., Jiang, Y., Ni, P., Zhang, C., Yang, Y., et al. (2021). Rational designing 0D/1D Z-scheme heterojunction on CdS nanorods for efficient visible-light-driven photocatalytic H-2 evolution. Chemical Engineering Journal, 412. https://doi.org/10.1016/j.cej.2021.128690

  60. Zhao, Q., Wang, S., Lv, Z., Zupanic, A., Guo, S., Zhao, Q., et al. (2022). Using nanomaterials to increase the efficiency of chemical production in microbial cell factories: A comprehensive review. Biotechnology Advances, 59, 107982. https://doi.org/10.1016/j.biotechadv.2022.107982

    Article  CAS  Google Scholar 

  61. Wang, X., Li, J., Zhang, C., Zhang, Y., Meng, J. (2021). Self-assembly of CdS@C. Beijerinckii hybrid system for efficient lignocellulosic butanol production. Chemical Engineering Journal, 424. https://doi.org/10.1016/j.cej.2021.130458

  62. Jiang, Z., Wang, B., Yu, J. C., Wang, J., An, T., Zhao, H., et al. (2018). AglnS(2)/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production. Nano Energy, 46, 234–240. https://doi.org/10.1016/j.nanoen.2018.02.001

    Article  CAS  Google Scholar 

  63. Yu, Y., Wang, S., Teng, J., Zupanic, A., Guo, S., Tang, X., et al. (2022). Photocatalytic material-microbe hybrids: Applications in environmental remediations. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.815181

  64. Claassens, N. J., Sousa, D. Z., dos Santos, V. A. P. M., de Vos, W. M., & van der Oost, J. (2016). Harnessing the power of microbial autotrophy. Nature Reviews Microbiology, 14(11), 692–706. https://doi.org/10.1038/nrmicro.2016.130

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the China Postdoctoral Science Foundation (2021M690081, 2021M691624).

Author information

Authors and Affiliations

Authors

Contributions

Na Wu: research literature, writing-original draft; Mingyan Xing: research literature, writing-original draft; Yingfeng Li and Qing Xu: resources, investigation; Ke Li: supervision, conceptualization, project administration.

Corresponding author

Correspondence to Ke Li.

Ethics declarations

Ethics Approval

Not applicable, because this is a review article does not include any experiments using human or animal participants.

Consent to Participate

Consent has been received from all the participating authors for this manuscript.

Consent for Publication

All the authors have provided their consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Xing, M., Li, Y. et al. Recent Advances In Microbe-Photocatalyst Hybrid Systems for Production of Bulk Chemicals: A Review. Appl Biochem Biotechnol 195, 1574–1588 (2023). https://doi.org/10.1007/s12010-022-04169-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04169-z

Keywords

Navigation