Skip to main content

Advertisement

Log in

Role of Biofilms in Waste Water Treatment

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm cells have a different physiology than planktonic cells, which has been the focus of most research. Biofilms are complex biostructures that form on any surface that comes into contact with water on a regular basis. They are dynamic, structurally complex systems having characteristics of multicellular animals and multiple ecosystems. The three themes covered in this review are biofilm ecology, biofilm reactor technology and design, and biofilm modeling. Membrane-supported biofilm reactors, moving bed biofilm reactors, granular sludge, and integrated fixed-film activated sludge processes are all examples of biofilm reactors used for water treatment. Biofilm control and/or beneficial application in membrane processes are improving. Biofilm models have become critical tools for biofilm foundational research as well as biofilm reactor architecture and design. At the same time, the differences between biofilm modeling and biofilm reactor modeling methods are acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This submitted article contains all of the data generated or analyzed during this investigation.

References

  1. World Water Assessment Programme (United Nations). (2006). Water: A shared responsibility (Vol. 2). Berghahn Books.

  2. Pal, S., Sarkar, U., & Dasgupta, D. (2010). Dynamic simulation of secondary treatment processes using trickling filters in a sewage treatment works in Howrah, west Bengal India. Desalination, 253(1–3), 135–140.

    Article  CAS  Google Scholar 

  3. Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  4. Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells.” Journal of Bacteriology, 189(22), 7945–7947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6(3), 199–210.

    Article  CAS  PubMed  Google Scholar 

  6. Castonguay, M. H., Van der Schaaf, S., Koester, W., Krooneman, J., Van der Meer, W., Harmsen, H., & Landini, P. (2006). Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Research in Microbiology, 157(5), 471–478.

    Article  CAS  PubMed  Google Scholar 

  7. Davey, M. E., & O’toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64(4), 847–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Reviews in Microbiology, 56(1), 187–209.

    Article  CAS  Google Scholar 

  9. Wimpenny, J., Manz, W., & Szewzyk, U. (2000). Heterogeneity in biofilms. FEMS Microbiology Reviews, 24(5), 661–671.

    Article  CAS  PubMed  Google Scholar 

  10. Kolter, R., & Greenberg, E. P. (2006). The superficial life of microbes. Nature, 441(7091), 300–302.

    Article  CAS  PubMed  Google Scholar 

  11. Costerton, J. W., Geesey, G. G., & Cheng, K. J. (1978). How bacteria stick. Scientific American, 238(1), 86–95.

    Article  CAS  PubMed  Google Scholar 

  12. Nicolella, C., Van Loosdrecht, M. C. M., & Heijnen, J. J. (2000). Wastewater treatment with particulate biofilm reactors. Journal of Biotechnology, 80(1), 1–33.

    Article  CAS  PubMed  Google Scholar 

  13. Quintelas, C., Fernandes, B., Castro, J., Figueiredo, H., & Tavares, T. (2008). Biosorption of Cr (VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC). Chemical Engineering Journal, 136(2–3), 195–203.

    Article  CAS  Google Scholar 

  14. Yang, X. L., Jiang, Q., Song, H. L., Gu, T. T., & Xia, M. Q. (2015). Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR. Journal of Hazardous Materials, 283, 186–192.

    Article  CAS  PubMed  Google Scholar 

  15. Lettinga, G. A. F. M., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., & Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering, 22, 699–734.

    Article  CAS  Google Scholar 

  16. Quintelas, C., da Silva, V. B., Silva, B., Figueiredo, H., & Tavares, T. (2011). Optimization of production of extracellular polymeric substances by Arthrobacter viscosus and their interaction with a 13X zeolite for the biosorption of Cr (VI). Environmental Technology, 32(14), 1541–1549.

    Article  CAS  PubMed  Google Scholar 

  17. Singh, R., Paul, D., & Jain, R. K. (2006). Biofilms: Implications in bioremediation. Trends in Microbiology, 14(9), 389–397.

    Article  CAS  PubMed  Google Scholar 

  18. Butler, C. S., & Boltz, J. P. (2014). Biofilm processes and control in water and wastewater treatment. In Remediation of Polluted Waters (pp. 90–107). Elsevier Inc..

  19. Hamadi, F., Latrache, H., Mabrrouki, M., Elghmari, A., Outzourhit, A., Ellouali, M., & Chtaini, A. (2005). Effect of pH on distribution and adhesion of Staphylococcus aureus to glass. Journal of Adhesion Science and Technology, 19(1), 73–85.

    Article  CAS  Google Scholar 

  20. Chen, C. Y., & Chen, S. D. (2000). Biofilm characteristics in biological denitrification biofilm reactors. Water Science and Technology, 41(4–5), 147–154.

    Article  CAS  Google Scholar 

  21. Lazarova, V., & Manem, J. (2000). Innovative biofilm treatment technologies for water and wastewater treatment. ChemInform31(32), no-no.

  22. Wilderer, P. A., & McSwain, B. S. (2004). The SBR and its biofilm application potentials. Water Science and Technology, 50(10), 1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Verma, M., Brar, S. K., Blais, J. F., Tyagi, R. D., & Surampalli, R. Y. (2006). Aerobic biofiltration processes—Advances in wastewater treatment. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(4), 264–276.

    Article  CAS  Google Scholar 

  24. Rodgers, M., & Zhan, X. M. (2003). Moving-medium biofilm reactors. Reviews in Environmental Science and Biotechnology, 2(2), 213–224.

    Article  CAS  Google Scholar 

  25. Odegaard, H., Gisvold, B., & Strickland, J. (2000). The influence of carrier size and shape in the moving bed biofilm process. Water Science and Technology, 41(4–5), 383–391.

    Article  CAS  Google Scholar 

  26. Christensson, M., & Welander, T. (2004). Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area. Water Science and Technology, 49(11–12), 207–214.

    Article  CAS  PubMed  Google Scholar 

  27. Stephenson, D., & Stephenson, T. (1992). Bioaugmentation for enhancing biological wastewater treatment. Biotechnology Advances, 10(4), 549–559.

    Article  CAS  PubMed  Google Scholar 

  28. Van Limbergen, H., Top, E. M., & Verstraete, W. (1998). Bioaugmentation in activated sludge: Current features and future perspectives. Applied Microbiology and Biotechnology, 50(1), 16–23.

    Article  Google Scholar 

  29. Spath, R., Flemming, H. C., & Wuertz, S. (1998). Sorption properties of biofilms. Water Science and Technology, 37(4–5), 207–210.

    Article  CAS  Google Scholar 

  30. Guibaud, G., van Hullebusch, E., & Bordas, F. (2006). Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: PH-sorption edge tests and mathematical equilibrium modelling. Chemosphere, 64(11), 1955–1962.

    Article  CAS  PubMed  Google Scholar 

  31. Jin, G., & Englande, A. J., Jr. (1998). Carbon tetrachloride biodegradation in a fixed-biofilm reactor and its kinetic study. Water Science and Technology, 38(8–9), 155–162.

    Article  CAS  Google Scholar 

  32. Chang, C. C., Tseng, S. K., Chang, C. C., & Ho, C. M. (2004). Degradation of 2-chlorophenol via a hydrogenotrophic biofilm under different reductive conditions. Chemosphere, 56(10), 989–997.

    Article  CAS  PubMed  Google Scholar 

  33. Kargi, F., & Eker, S. (2005). Removal of 2, 4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochemistry, 40(6), 2105–2111.

    Article  CAS  Google Scholar 

  34. Zilouei, H., Soares, A., Murto, M., Guieysse, B., & Mattiasson, B. (2006). Influence of temperature on process efficiency and microbial community response during the biological removal of chlorophenols in a packed-bed bioreactor. Applied Microbiology and Biotechnology, 72(3), 591–599.

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi, T., Ishida, M., & Suzuki, T. (1999). Biodegradation of hydrocarbons by Prototheca zopfii in rotating biological contactors. Process Biochemistry, 35(3–4), 403–409.

    Article  CAS  Google Scholar 

  36. Eriksson, M., Dalhammar, G., & Mohn, W. W. (2002). Bacterial growth and biofilm production on pyrene. FEMS microbiology ecology, 40(1), 21–27.

    Article  CAS  PubMed  Google Scholar 

  37. Rosen, M., Welander, T., Löfqvist, A., & Holmgren, J. (1998). Development of a new process for treatment of a pharmaceutical wastewater. Water Science and Technology, 37(9), 251–258.

    Article  CAS  Google Scholar 

  38. Henze, M. (1997). Wastewater, volumes and composition. In Wastewater Treatment (pp. 11–36). Springer, Berlin, Heidelberg.

  39. Stoddart, F. W. (1911). Nitrification and the absorption theory. Journal of the Society of Chemical Industry, 30, 236–237.

    CAS  Google Scholar 

  40. Corbett, J. (1903). A dozen years of sewage purification experiments on a large scale at Salford England. Eng. News-Rec, 49(9), 191–192.

    Google Scholar 

  41. Nodler, K., Voutsa, D., & Licha, T. (2014). Polar organic micropollutants in the coastal environment of different marine systems. Marine Pollution Bulletin, 85(1), 50–59.

    Article  PubMed  Google Scholar 

  42. Nakayama, T., Hoa, T. T. T., Harada, K., Warisaya, M., Asayama, M., Hinenoya, A., ... & Yamamoto, Y. (2017). Water metagenomic analysis reveals low bacterial diversity and the presence of antimicrobial residues and resistance genes in a river containing wastewater from backyard aquacultures in the Mekong Delta, Vietnam. Environmental Pollution222, 294-306

  43. Basiuk, M., Brown, R. A., Cartwright, D., Davison, R., & Wallis, P. M. (2017). Trace organic compounds in rivers, streams, and wastewater in southeastern Alberta Canada. Inland Waters, 7(3), 283–296.

    Article  CAS  Google Scholar 

  44. Yadav, M. K. (2017). Role of biofilms in environment pollution and control. In Microbial Biotechnology (pp. 377–398). Springer, Singapore.

  45. Chow, L. K., Ghaly, T. M., & Gillings, M. R. (2021). A survey of sub-inhibitory concentrations of antibiotics in the environment. Journal of Environmental Sciences, 99, 21–27.

    Article  CAS  Google Scholar 

  46. Burmolle, M., Thomsen, T. R., Fazli, M., Dige, I., Christensen, L., Homøe, P., ... & Bjarnsholt, T. (2010). Biofilms in chronic infections–a matter of opportunity–monospecies biofilms in multispecies infections. FEMS Immunology & Medical Microbiology59(3), 324-336.

  47. Kaeseberg, T., Schubert, S., Oertel, R., Zhang, J., Berendonk, T. U., & Krebs, P. (2018). Hot spots of antibiotic tolerant and resistant bacterial subpopulations in natural freshwater biofilm communities due to inevitable urban drainage system overflows. Environmental pollution, 242, 164–170.

    Article  CAS  PubMed  Google Scholar 

  48. Calero-Caceres, W., Méndez, J., Martín-Díaz, J., & Muniesa, M. (2017). The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. Environmental Pollution, 223, 384–394.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu, Y. G., Zhao, Y. I., Li, B., Huang, C. L., Zhang, S. Y., Yu, S., ... & Su, J. Q. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature microbiology2(4), 1-7.

  50. Gillings, M. R. (2018). DNA as a pollutant: The clinical class 1 integron. Current Pollution Reports, 4(1), 49–55.

    Article  CAS  Google Scholar 

  51. Guo, X. P., Yang, Y., Lu, D. P., Niu, Z. S., Feng, J. N., Chen, Y. R., ... & Hochella Jr, M. F. (2018). Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research129, 277-286.

  52. Lepesova, K., Kraková, L., Pangallo, D., Medveďová, A., Olejníková, P., Mackuľak, T., ... & Birošová, L. (2018). Prevalence of antibiotic-resistant coliform bacteria, Enterococcus spp. and Staphylococcus spp. in wastewater sewerage biofilm. Journal of global antimicrobial resistance14, 145-151.

  53. Zhang, X., Chen, Z., Ma, Y., Zhang, N., Pang, Q., Xie, X., ... & Jia, J. (2019). Response of Anammox biofilm to antibiotics in trace concentration: microbial activity, diversity and antibiotic resistance genes. Journal of hazardous materials367, 182-187.

  54. Zhang, L., Dong, D., Hua, X., & Guo, Z. (2019). Sorption of the fluoroquinolone antibiotic ofloxacin by aquatic sediments: Influence of biofilm development at the sediment-water interface. Journal of Soils and Sediments, 19(12), 4063–4072.

    Article  CAS  Google Scholar 

  55. Huang, H., Ding, L. L., Ren, H. Q., Geng, J. J., Xu, K., & Zhang, Y. (2015). Preconditioning of model biocarriers by soluble pollutants: A QCM-D study. ACS applied materials & interfaces, 7(13), 7222–7230.

    Article  CAS  Google Scholar 

  56. Huang, H., Lin, Y., Peng, P., Geng, J., Xu, K., Zhang, Y., ... & Ren, H. (2018). Calcium ion-and rhamnolipid-mediated deposition of soluble matters on biocarriers. Water Research133, 37-46.

  57. Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS microbiology letters, 236(2), 163–173.

    Article  CAS  PubMed  Google Scholar 

  58. Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., & Michiels, J. (2008). Living on a surface: Swarming and biofilm formation. Trends in microbiology, 16(10), 496–506.

    Article  CAS  PubMed  Google Scholar 

  59. Simoes, M., Simões, L. C., & Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT-Food Science and Technology, 43(4), 573–583.

    Article  CAS  Google Scholar 

  60. Derlon, N., Coufort-Saudejaud, C., Queinnec, I., & Paul, E. (2013). Growth limiting conditions and denitrification govern extent and frequency of volume detachment of biofilms. Chemical Engineering Journal, 218, 368–375.

    Article  CAS  Google Scholar 

  61. Huang, H., Ren, H., Ding, L., Geng, J., Xu, K., & Zhang, Y. (2014). Aging biofilm from a full-scale moving bed biofilm reactor: Characterization and enzymatic treatment study. Bioresource Technology, 154, 122–130.

    Article  CAS  PubMed  Google Scholar 

  62. Cogan, N. G., & Keener, J. P. (2004). The role of the biofilm matrix in structural development. Mathematical medicine and biology: A journal of the IMA, 21(2), 147–166.

    Article  CAS  PubMed  Google Scholar 

  63. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging infectious diseases, 8(9), 881.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kjelleberg, S., & Givskov, M. (2007). Biofilm mode of life. Horizon Bioscience.

  65. Kolari, M., Nuutinen, J., & Salkinoja-Salonen, M. S. (2001). Mechanisms of biofilm formation in paper machine by Bacillus species: The role of Deinococcus geothermalis. Journal of Industrial Microbiology and Biotechnology, 27(6), 343–351.

    Article  CAS  PubMed  Google Scholar 

  66. "Biofilm Basics | Center for Biofilm Engineering." Center for Biofilm Engineering: Biofilm Research & Education Relevant to Industry, Health, and the Environment | Center for Biofilm Engineering. Montana State University, 2008. Web. 18 Jan. 2012. http://www.biofilm.montana.edu/biofilm-basics.html.

  67. Webb, J. S. (2007). Differentiation and dispersal in biofilms, Book chapter in The Biofilm Mode of Life: Mechanisms and Adaptations, Horizon Biosci.

  68. Shen, Y., Monroy, G. L., Derlon, N., Janjaroen, D., Huang, C., Morgenroth, E., ... & Nguyen, T. H. (2015). Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. Environmental Science & Technology49(7), 4274-4282.

  69. BinAhmed, S., Hasane, A., Wang, Z., Mansurov, A., & Romero-Vargas Castrillón, S. (2018). Bacterial adhesion to ultrafiltration membranes: Role of hydrophilicity, natural organic matter, and cell-surface macromolecules. Environmental Science & Technology, 52(1), 162–172.

    Article  CAS  Google Scholar 

  70. Kumar, A., & Ting, Y. P. (2016). Streptomycin favors biofilm formation by altering cell surface properties. Applied Microbiology and Biotechnology, 100(20), 8843–8853.

    Article  CAS  PubMed  Google Scholar 

  71. Guo, K., Freguia, S., Dennis, P. G., Chen, X., Donose, B. C., Keller, J., ... & Rabaey, K. (2013). Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environmental Science & Technology47(13), 7563-7570.

  72. Ham, S. Y., Kim, H. S., Cha, E., Park, J. H., & Park, H. D. (2018). Mitigation of membrane biofouling by a quorum quenching bacterium for membrane bioreactors. Bioresource Technology, 258, 220–226.

    Article  CAS  PubMed  Google Scholar 

  73. Ono, K., Oka, R., Toyofuku, M., Sakaguchi, A., Hamada, M., Yoshida, S., & Nomura, N. (2014). cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes and Environments, 29(1), 104–106.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liang, Z. X. (2015). The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Natural product reports, 32(5), 663–683.

    Article  CAS  PubMed  Google Scholar 

  75. Roosjen, A., Busscher, H. J., Norde, W., & Van der Mei, H. C. (2006). Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly (ethylene oxide) brush. Microbiology, 152(9), 2673–2682.

    Article  CAS  PubMed  Google Scholar 

  76. Wei, Q., & Ma, L. Z. (2013). Biofilm matrix and its regulation in Pseudomonas aeruginosa. International journal of molecular sciences, 14(10), 20983–21005.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kang, S. S., & a, Hoek, E., Deshusses, M., and Matsumoto, M. (2004). Direct observation of biofouling in cross-flow microfiltration: Mechanisms of deposition and release. Journal of Membrane Science, 244, 151–165.

    Article  CAS  Google Scholar 

  78. Liu, S., Gunawan, C., Barraud, N., Rice, S. A., Harry, E. J., & Amal, R. (2016). Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environmental Science & Technology, 50(17), 8954–8976.

    Article  CAS  Google Scholar 

  79. Cresson, R., Carrère, H., Delgenes, J. P., & Bernet, N. (2006). Biofilm formation during the start-up period of an anaerobic biofilm reactor—Impact of nutrient complementation. Biochemical Engineering Journal, 30(1), 55–62.

    Article  CAS  Google Scholar 

  80. Villaverde, S., Garcia-Encina, P. A., & Fdz-Polanco, F. (1997). Influence of pH over nitrifying biofilm activity in submerged biofilters. Water Research, 31(5), 1180–1186.

    Article  CAS  Google Scholar 

  81. Jahid, I. K., Mizan, M. F. R., Ha, A. J., & Ha, S. D. (2015). Effect of salinity and incubation time of planktonic cells on biofilm formation, motility, exoprotease production, and quorum sensing of Aeromonas hydrophila. Food microbiology, 49, 142–151.

    Article  CAS  PubMed  Google Scholar 

  82. Gilbert, E. M., Agrawal, S., Schwartz, T., Horn, H., & Lackner, S. (2015). Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures. Water Research, 81, 92–100.

    Article  CAS  PubMed  Google Scholar 

  83. Young, B., Delatolla, R., Kennedy, K., Laflamme, E., & Stintzi, A. (2017). Low temperature MBBR nitrification: Microbiome analysis. Water Research, 111, 224–233.

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Y. (1995). Adhesion kinetics of nitrifying bacteria on various thermoplastic supports. Colloids and Surfaces B: Biointerfaces, 5(5), 213–219.

    Article  CAS  Google Scholar 

  85. Sauer, K., & Camper, A. K. (2001). Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. Journal of Bacteriology, 183(22), 6579–6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cao, B., Ahmed, B., Kennedy, D. W., Wang, Z., Shi, L., Marshall, M. J., ... & Beyenal, H. (2011). Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U (VI) immobilization. Environmental Science & Technology45(13), 5483–5490.

  87. Lai, C. Y., Dong, Q. Y., Chen, J. X., Zhu, Q. S., Yang, X., Chen, W. D., ... & Zhu, L. (2018). Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate. Environmental Science & Technology52(18), 10680-10688.

  88. Shrout, J. D., & Nerenberg, R. (2012). Monitoring bacterial twitter: Does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environmental Science & Technology, 46(4), 1995–2005.

    Article  CAS  Google Scholar 

  89. Ren, T. T., Li, X. Y., & Yu, H. Q. (2013). Effect of N-acy-l-homoserine lactones-like molecules from aerobic granules on biofilm formation by Escherichia coli K12. Bioresource Technology, 129, 655–658.

    Article  CAS  PubMed  Google Scholar 

  90. Wang, J., Ren, H., Li, X., Li, J., Ding, L., Geng, J., ... & Hu, H. (2018). In situ monitoring of wastewater biofilm formation process via ultrasonic time domain reflectometry (UTDR). Chemical Engineering Journal334, 2134-2141.

  91. Schmid, N., Suppiger, A., Steiner, E., Pessi, G., Kaever, V., Fazli, M., ... & Eberl, L. (2017). High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111. Microbiology163(5), 754-764.

  92. Peng, P., Huang, H., Ren, H., Ma, H., Lin, Y., Geng, J., ... & Ding, L. (2018). Exogenous N-acyl homoserine lactones facilitate microbial adhesion of high ammonia nitrogen wastewater on biocarrier surfaces. Science of the Total Environment624, 1013-1022.

  93. Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, R., Han, Z. Y., Chen, Z. J., & SHI, D. Z., HUANG, X. X., & WU, W. X. (2011). Microstructure and microbial ecology of biofilm in the bioreactor for nitrogen removing from wastewater: A review. Chinese journal of ecology, 30, 2628–2636.

    CAS  Google Scholar 

  95. Zhu, Y., Zhang, Y., Ren, H. Q., Geng, J. J., Xu, K., Huang, H., & Ding, L. L. (2015). Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. Bioresource Technology, 180, 345–351.

    Article  CAS  PubMed  Google Scholar 

  96. Fu, B., Liao, X., Liang, R., Ding, L., Xu, K., & Ren, H. (2011). COD removal from expanded granular sludge bed effluent using a moving bed biofilm reactor and their microbial community analysis. World Journal of Microbiology and Biotechnology, 27(4), 915–923.

    Article  Google Scholar 

  97. He, Q., Zhu, Y., Li, G., Fan, L., Ai, H., Huangfu, X., & Li, H. (2017). Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters. Frontiers of Environmental Science & Engineering, 11(6), 1–11.

    Article  Google Scholar 

  98. Persson, F., Sultana, R., Suarez, M., Hermansson, M., Plaza, E., & Wilén, B. M. (2014). Structure and composition of biofilm communities in a moving bed biofilm reactor for nitritation–anammox at low temperatures. Bioresource Technology, 154, 267–273.

    Article  CAS  PubMed  Google Scholar 

  99. Lu, H., Chandran, K., & Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64, 237–254.

    Article  CAS  PubMed  Google Scholar 

  100. Peng, X., Guo, F., Ju, F., & Zhang, T. (2014). Shifts in the microbial community, nitrifiers and denitrifiers in the biofilm in a full-scale rotating biological contactor. Environmental Science & Technology, 48(14), 8044–8052.

    Article  CAS  Google Scholar 

  101. Hoang, V., Delatolla, R., Abujamel, T., Mottawea, W., Gadbois, A., Laflamme, E., & Stintzi, A. (2014). Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 C. water research49, 215–224.

  102. Ma, R., Qiu, S., Jiang, Q., Sun, H., Xue, T., Cai, G., & Sun, B. (2017a). AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus. International Journal of Medical Microbiology, 307(4–5), 257–267.

    Article  CAS  PubMed  Google Scholar 

  103. Ma, W., Han, Y., Ma, W., Han, H., Zhu, H., Xu, C., ... & Wang, D. (2017b). Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor. Bioresource Technology244, 84-91.

  104. Piculell, M., Suarez, C., Li, C., Christensson, M., Persson, F., Wagner, M., ... & Welander, T. (2016). The inhibitory effects of reject water on nitrifying populations grown at different biofilm thickness. Water Research104, 292-302.

  105. Fish, K., Osborn, A. M., & Boxall, J. B. (2017). Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration. Science of the Total Environment, 593, 571–580.

    Article  PubMed  Google Scholar 

  106. Takada, K., Hashimoto, K., Soda, S., Ike, M., Makio, T., Nakayama, Y., ... & Hashimoto, T. (2018). Microbial communities on the submerged membranes in full-scale membrane bioreactors treating municipal wastewater. Journal of Environmental Engineering144(1), 04017084.

  107. Bellucci, M., Bernet, N., Harmand, J., Godon, J. J., & Milferstedt, K. (2015). Invasibility of resident biofilms by allochthonous communities in bioreactors. Water Research, 81, 232–239.

    Article  CAS  PubMed  Google Scholar 

  108. Saur, T., Morin, E., Habouzit, F., Bernet, N., & Escudié, R. (2017). Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor. PLoS ONE, 12(2), e0172113.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Violant, D., Galofré, M., Nart, J., & Teles, R. P. (2014). In vitro evaluation of a multispecies oral biofilm on different implant surfaces. Biomedical Materials, 9(3), 035007.

    Article  CAS  PubMed  Google Scholar 

  110. Feres, M., Louzoun, Y., Haber, S., Faveri, M., Figueiredo, L. C., & Levin, L. (2018). Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles. International dental journal, 68(1), 39–46.

    Article  PubMed  Google Scholar 

  111. Wen, Z. T., & Burne, R. A. (2003). Functional Genomics Approach to Identifying Genes Required for Biofilm Development by Streptococcus mutans. Applied and Environmental Microbiology, 69(1), 722–722.

    Article  CAS  PubMed Central  Google Scholar 

  112. Zhang, P., Guo, J. S., Shen, Y., Yan, P., Chen, Y. P., Wang, H., ... & Li, C. (2015). Microbial communities, extracellular proteomics and polysaccharides: a comparative investigation on biofilm and suspended sludge. Bioresource Technology190, 21-28.

  113. Herschend, J., Damholt, Z. B., Marquard, A. M., Svensson, B., Sørensen, S. J., Hägglund, P., & Burmølle, M. (2017). A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Scientific reports, 7(1), 1–13.

    Article  CAS  Google Scholar 

  114. Juhlin, A., Svensson, S., Thomsen, P., & Trobos, M. (2017). Staphylococcal biofilm gene expression on biomaterials—A methodological study. Journal of Biomedical Materials Research Part A, 105(12), 3400–3412.

    Article  CAS  PubMed  Google Scholar 

  115. Desmond, P., Best, J. P., Morgenroth, E., & Derlon, N. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research, 132, 211–221.

    Article  CAS  PubMed  Google Scholar 

  116. Yu, Q., Huang, H., Ren, H., Ding, L., & Geng, J. (2016). In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study. Bioresource Technology, 219, 403–410.

    Article  CAS  PubMed  Google Scholar 

  117. Hu, X. B., Wang, Z., Xu, K., & Ren, H. Q. (2013). Biofilm regeneration on carriers in MBBR used for vitamin C wastewater treatment. Water Science and Technology, 67(6), 1310–1316.

    Article  CAS  PubMed  Google Scholar 

  118. Dheilly, A., Linossier, I., Darchen, A., Hadjiev, D., Corbel, C., & Alonso, V. (2008). Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Applied Microbiology and Biotechnology, 79(1), 157–164.

    Article  CAS  PubMed  Google Scholar 

  119. Cao, B., Majors, P. D., Ahmed, B., Renslow, R. S., Silvia, C. P., Shi, L., ... & Beyenal, H. (2012). Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environmental Microbiology14(11), 2901-2910.

  120. Herrling, M. P., Weisbrodt, J., Kirkland, C. M., Williamson, N. H., Lackner, S., Codd, S. L., ... & Horn, H. (2017). NMR investigation of water diffusion in different biofilm structures. Biotechnology and Bioengineering114(12), 2857-2867.

  121. Guo, J. S., Zhang, P., Chen, Y. P., Shen, Y., Hu, X., Yan, P., ... & Wang, G. X. (2015). Microbial attachment and adsorption–desorption kinetic of tightly bound extracellular polymeric substances on model organic surfaces. Chemical Engineering Journal279, 516-521.

  122. Li, X., Li, J., Wang, J., Wang, H., Cui, C., He, B., & Zhang, H. (2014). Direct monitoring of sub-critical flux fouling in a horizontal double-end submerged hollow fiber membrane module using ultrasonic time domain reflectometry. Journal of Membrane Science, 451, 226–233.

    Article  CAS  Google Scholar 

  123. Tomczyk-Zak, K., Szczesny, P., Gromadka, R., & Zielenkiewicz, U. (2017). Taxonomic and chemical assessment of exceptionally abundant rock mine biofilm. PeerJ, 5, e3635.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Han, A., Tsoi, J. K. H., Matinlinna, J. P., & Chen, Z. (2017). Influence of grit-blasting and hydrofluoric acid etching treatment on surface characteristics and biofilm formation on zirconia. Coatings, 7(8), 130.

    Article  Google Scholar 

  125. Zhang, P., Chen, Y. P., Wang, W., Shen, Y., & Guo, J. S. (2016). Surface plasmon resonance for water pollutant detection and water process analysis. TrAC Trends in Analytical Chemistry, 85, 153–165.

    Article  CAS  Google Scholar 

  126. Filion-Cote, S., Melaine, F., Kirk, A. G., & Tabrizian, M. (2017). Monitoring of bacterial film formation and its breakdown with an angular-based surface plasmon resonance biosensor. The Analyst, 142(13), 2386–2394.

    Article  CAS  PubMed  Google Scholar 

  127. Kim, H. S., Schuler, A. J., Gunsch, C. K., Pei, R., Gellner, J., Boltz, J. P., ... & Dodson, R. (2011). Comparison of conventional and integrated fixed‐film activated sludge systems: attached‐and suspended‐growth functions and quantitative polymerase chain reaction measurements. Water Environment Research83(7), 627-635.

  128. Terada, A., Lackner, S., Kristensen, K., & Smets, B. F. (2010). Inoculum effects on community composition and nitritation performance of autotrophic nitrifying biofilm reactors with counter-diffusion geometry. Environmental Microbiology, 12(10), 2858–2872.

    CAS  PubMed  Google Scholar 

  129. Okabe, S., Satoh, H., & Watanabe, Y. (1999). In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology, 65(7), 3182–3191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vlaeminck, S. E., Terada, A., Smets, B. F., De Clippeleir, H., Schaubroeck, T., Bolca, S., ... & Verstraete, W. (2010). Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Applied and Environmental Microbiology76(3), 900–909.

  131. Lawrence, J. R., Swerhone, G. D. W., Leppard, G. G., Araki, T., Zhang, X., West, M. M., & Hitchcock, A. P. (2003). Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Applied and Environmental Microbiology, 69(9), 5543–5554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wagner, M., Taherzadeh, D., Haisch, C., & Horn, H. (2010). Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnology and Bioengineering, 107(5), 844–853.

    Article  CAS  PubMed  Google Scholar 

  133. Sandt, C., Smith-Palmer, T., Pink, J., Brennan, L., & Pink, D. (2007). Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. Journal of Applied Microbiology, 103(5), 1808–1820.

    Article  CAS  PubMed  Google Scholar 

  134. Deibel, PH.D, Virginia, and Jean Schoeni, PH.D. (2003). "Develop a defense against biofilms." Food Safety Magazine.

  135. Kokare, C. R., Chakraborty, S., Khopade, A. N., & Mahadik, K. R. (2009). Biofilm: Importance and applications.

  136. Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging infectious diseases, 7(2), 277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Proal, A. (2008). Understanding biofilms. Bacteriality exploring chronic disease. http://bacteriality.com/2008/05/26/biofilm/.

  138. Clark Ehlers, G. A., & Turner, S. J. (2012). Chapter 6: Abstract. Microbial biofilms current research and applications. Caister Academic Pr,. Web21.

  139. Teitzel, G. M., & Parsek, M. R. (2003). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology, 69(4), 2313–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morgenroth E (2008) Modelling biofilm systems. Henze, M., van Loosdrecht, M. C., Ekama, G. A., & Brdjanovic, D. (Eds.). Biological wastewater treatment–Principles, Modelling, and Design, pp. 457-492. London: IWA Publishing.

  141. Harremoes, P., & Wilderer, P. A. (1993). Fundamentals of nutrient removal in biofilters. In 9th EWPCA-ISWA Symposium.

  142. Henze, M., van Loosdrecht, M. C., Ekama, G. A., & Brdjanovic, D. (Eds.). (2008). Biological wastewater treatment. IWA publishing.

  143. Wanner, O. (2006). Mathematical modeling of biofilms. IWA Pub..

  144. Boltz, J. P., Morgenroth, E., & Sen, D. (2010). Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Science and Technology, 62(8), 1821–1836.

    Article  CAS  PubMed  Google Scholar 

  145. Boltz, J. P., Morgenroth, E., Barbadillo, C. D., Dempsey, M. J., McQuarrie, J., Ghylin, T., ... & Nerenberg, R. (2010b). Biofilm Reactor Technology and Design. In Design of municipal wastewater treatment plants. 2, Liquid treatment processes (Vol. 8, p. 13). WEF Press.

  146. Picioreanu, C., Kreft, J. U., & Van Loosdrecht, M. C. (2004). Particle-based multidimensional multispecies biofilm model. Applied and Environmental Microbiology, 70(5), 3024–3040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Boltz, J. P., & Daigger, G. T. (2010). Uncertainty in bulk-liquid hydrodynamics and biofilm dynamics creates uncertainties in biofilm reactor design. Water Science and Technology, 61(2), 307–316.

    Article  CAS  PubMed  Google Scholar 

  148. Kagawa, Y., Tahata, J., Kishida, N., Matsumoto, S., Picioreanu, C., Van Loosdrecht, M. C. M., & Tsuneda, S. (2015). Modeling the nutrient removal process in aerobic granular sludge system by coupling the reactor-and granule-scale models. Biotechnology and Bioengineering, 112(1), 53–64.

    Article  CAS  PubMed  Google Scholar 

  149. Radu, A. I., Bergwerff, L., Van Loosdrecht, M. C. M., & Picioreanu, C. (2015). Combined biofouling and scaling in membrane feed channels: A new modeling approach. Biofouling, 31(1), 83–100.

    Article  CAS  PubMed  Google Scholar 

  150. Van Hulle, S. W. H., Callens, J., Mampaey, K. E., Van Loosdrecht, M. C. M., & Volcke, E. I. P. (2012). N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor–a simulation study. Environmental Technology, 33(20), 2281–2290.

    Article  PubMed  Google Scholar 

  151. Sabba, F., Picioreanu, C., Boltz, J. P., & Nerenberg, R. (2017). Predicting N2O emissions from nitrifying and denitrifying biofilms: A modeling study. Water Science and Technology, 75(3), 530–538.

    Article  CAS  PubMed  Google Scholar 

  152. Picioreanu, C., Head, I. M., Katuri, K. P., van Loosdrecht, M. C., & Scott, K. (2007). A computational model for biofilm-based microbial fuel cells. Water Research, 41(13), 2921–2940.

    Article  CAS  PubMed  Google Scholar 

  153. Wolf, G., Picioreanu, C., & van Loosdrecht, M. C. (2007). Kinetic modeling of phototrophic biofilms: The PHOBIA model. Biotechnology and Bioengineering, 97(5), 1064–1079.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Department of Biotechnology (DBT), New Delhi, provided financial support (Grant No. BT/PR31154/PBD/26/762/2019) to complete this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SV wrote the whole manuscript. AK gave the idea and also involved in completing the manuscript. SJ contributed significantly in revising the manuscript.

Corresponding authors

Correspondence to Arindam Kuila or Samuel Jacob.

Ethics declarations

Ethics Approval and Consent to participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Kuila, A. & Jacob, S. Role of Biofilms in Waste Water Treatment. Appl Biochem Biotechnol 195, 5618–5642 (2023). https://doi.org/10.1007/s12010-022-04163-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04163-5

Keywords

Navigation