Skip to main content
Log in

Study of the Effects of Nicotine and Caffeine for the Treatment of Parkinson’s Disease

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is considered to be a highly severe neurological disorder. PD occurs due to a decrease in dopamine production by the degeneration of dopamine-secreting neurons. Genetic mutations, environmental toxins and lifestyle are some of the risk factors of the progressive neurodegenerative disorder PD. Parkin protein, which is encoded by the PARK gene, is one of the important proteins, which is one of the causative agents. The Parkin protein has several mutations which lead to the development of the disease. Apart from PD, the mutations in Parkin also showed to be responsible for the onset of diseases like cancers. It is reported that the E28K mutation in the Ubl domain of parkin is highly deleterious and responsible for the onset of melanoma. This necessitates the development of new therapeutics against PD. Molecules like levodopa, carbidopa, monoamine oxidase type B inhibitors (MBO inhibitors), dopamine agonists, anticholinergics and amantadine are some commonly used drugs used to treat PD. Recently, there have been increasing evidence which shows that cigarette smoking and consumptions of coffee and tea could have important roles in modulating the risk of PD. Therefore, we planned to analyse the molecular mechanism of the binding interactions of nicotine, caffeine and the polyphenol ( −)-epigallocatechin-3-gallate (EGCG) from green tea with Parkin protein to predict their therapeutic potentials in PD targeting the E28K mutation. We focused on E28K mutant of Parkin as this mutant form of parkin has been shown to be the most pathogenic one. We could identify the potential therapeutic aspects of these natural products to prevent the onset of PD. This work may therefore be considered to be the first of its kind which would take into consideration the environmental toxicological approach in designing natural product inhibitors against the onset of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data will be available upon request.

References

  1. Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3(1), 1–21.

    Article  Google Scholar 

  2. Alexander, G. E. (2004). Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in Clinical Neuroscience, 6(3), 259.

    Article  Google Scholar 

  3. Klein, C., & Westenberger, A. (2012). Genetics of Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2(1), a008888.

    Article  Google Scholar 

  4. Karimi-Moghadam, A., Charsouei, S., Bell, B., & Jabalameli, M. R. (2018). Parkinson disease from mendelian forms to genetic susceptibility: New molecular insights into the neurodegeneration process. Cellular and Molecular Neurobiology, 38(6), 1153–1178.

    Article  Google Scholar 

  5. Greenland, J. C., & Barker, R. A. (2018). The differential diagnosis of Parkinson’s disease (pp. 109–128). Exon Publications.

    Google Scholar 

  6. Wishart, S., & Macphee, G. J. (2011). Evaluation and management of the non-motor features of Parkinson’s disease. Therapeutic Advances in Chronic Disease, 2(2), 69–85.

    Article  Google Scholar 

  7. Seirafi, M., Kozlov, G., & Gehring, K. (2015). Parkin structure and function. The FEBS Journal, 282(11), 2076–2088.

    Article  CAS  Google Scholar 

  8. Jin, S. M., & Youle, R. J. (2012). PINK1-and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125(4), 795–799.

    Article  CAS  Google Scholar 

  9. Aguirre, J. D., Dunkerley, K. M., Mercier, P., & Shaw, G. S. (2017). Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proceedings of the National Academy of Sciences, 114(2), 298–303.

    Article  CAS  Google Scholar 

  10. Gladkova, C., Maslen, S. L., Skehel, J. M., & Komander, D. (2018). Mechanism of parkin activation by PINK1. Nature, 559(7714), 410–414.

    Article  CAS  Google Scholar 

  11. Caulfield, T. R., Fiesel, F. C., Moussaud-Lamodière, E. L., Dourado, D. F., Flores, S. C., & Springer, W. (2014). Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLoS Computational Biology, 10(11), e1003935.

    Article  Google Scholar 

  12. Selvaraj, S., & Piramanayagam, S. (2019). Impact of gene mutation in the development of Parkinson’s disease. Genes & Diseases, 6(2), 120–128.

    Article  CAS  Google Scholar 

  13. Cook, C., Stetler, C., & Petrucelli, L. (2012). Disruption of protein quality control in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2(5), a009423.

    Article  Google Scholar 

  14. Biswas, S., Roy, R., Biswas, R., & Bagchi, A. (2020). Structural analysis of the effects of mutations in Ubl domain of Parkin leading to Parkinson’s disease. Gene, 726, 144186.

    Article  CAS  Google Scholar 

  15. Levin, L., Srour, S., Gartner, J., Kapitansky, O., Qutob, N., Dror, S., Golan, T., Dayan, R., Brener, R., Ziv, T., & Levy, C. (2016). Parkin somatic mutations link melanoma and Parkinson’s disease. Journal of Genetics and Genomics, 43(6), 369–379.

    Article  Google Scholar 

  16. Quik, M., O’Neill, M., & Perez, X. A. (2007). Nicotine neuroprotection against nigrostriatal damage: Importance of the animal model. Trends in Pharmacological Sciences, 28(5), 229–235.

    Article  CAS  Google Scholar 

  17. Hernán, M. A., Takkouche, B., Caamaño-Isorna, F., & Gestal-Otero, J. J. (2002). A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Annals of Neurology, 52(3), 276–284.

    Article  Google Scholar 

  18. Barreto, G. E., Iarkov, A., & Moran, V. E. (2015). Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease. Frontiers in Aging Neuroscience, 6, 340.

    Article  Google Scholar 

  19. Levites, Y., Weinreb, O., Maor, G., Youdim, M. B., & Mandel, S. (2001). Green tea polyphenol (–)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. Journal of Neurochemistry, 78(5), 1073–1082.

    Article  CAS  Google Scholar 

  20. Zhou, T., Zhu, M., & Liang, Z. (2018). (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Molecular Medicine Reports, 17(4), 4883–4888.

    CAS  Google Scholar 

  21. Postuma, R. B., Lang, A. E., Munhoz, R. P., Charland, K., Pelletier, A., Moscovich, M., Filla, L., Zanatta, D., Romenets, S. R., Altman, R., & Shah, B. (2012). Caffeine for treatment of Parkinson disease: A randomized controlled trial. Neurology, 79(7), 651–658.

    Article  CAS  Google Scholar 

  22. Sääksjärvi, K., Knekt, P., Rissanen, H., Laaksonen, M. A., Reunanen, A., & Männistö, S. (2008). Prospective study of coffee consumption and risk of Parkinson’s disease. European Journal of Clinical Nutrition, 62(7), 908–915.

    Article  Google Scholar 

  23. Chen, J. F., Eltzschig, H. K., & Fredholm, B. B. (2013). Adenosine receptors as drug targets—What are the challenges? Nature Reviews Drug Discovery, 12(4), 265–286.

    Article  CAS  Google Scholar 

  24. Ren, X., & Chen, J. F. (2020). Caffeine and Parkinson’s disease: Multiple benefits and emerging mechanisms. Frontiers in Neuroscience, 14, 1334.

    Article  Google Scholar 

  25. Zhou, Z. D., Xie, S. P., Saw, W. T., Ho, P. G. H., Wang, H. Y., Zhou, L., Zhao, Y., & Tan, E. K. (2019). The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in Parkinson’s disease (PD). Cells, 8(8), 911.

    Article  CAS  Google Scholar 

  26. Kumar, P. M., Paing, S. S. T., Li, H., Pavanni, R., Yuen, Y., Zhao, Y., & Tan, E. K. (2015). Differential effect of caffeine intake in subjects with genetic susceptibility to Parkinson’s disease. Scientific Reports, 5(1), 1–3.

    Article  Google Scholar 

  27. Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bansal, P., Bridge, A. J., Poux, S., Bougueleret, L. & Xenarios, I. (2016). UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. In Plant Bioinformatics (pp. 23–54). Humana Press.

  28. Luthy, R., Bowei, J., & Einsenberg, D. (1997). Verify3D: Assessment of protein models with threedimensional profiles. Methods Enzymology., 277, 396–404.

    Article  Google Scholar 

  29. Lovell, S. C., Davis, I. W., Arendall III, W. B., De Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J.S. & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50(3), 437–450.

  30. Ramachandran, G. T., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–437.

    Article  CAS  Google Scholar 

  31. Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213.

    Article  CAS  Google Scholar 

  32. Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound docking of rigid molecules. In International workshop on algorithms in bioinformatics (pp. 185–200). Springer.

  33. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(suppl_2), W363–W367.

  34. Pardridge, W. M. (2012). Drug transport across the blood–brain barrier. Journal of Cerebral Blood Flow & Metabolism, 32(11), 1959–1972.

    Article  CAS  Google Scholar 

  35. Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score–a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm, 10(1), 148–157.

    Article  CAS  Google Scholar 

  36. Hubatsch, I., Ragnarsson, E. G., & Artursson, P. (2007). Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols, 2(9), 2111–2119.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge University of Kalyani, and UGC-SAP-DRSII, DST-FIST, Government of India for the support. Sima Biswas receives fellowship from University of Kalyani.

Author information

Authors and Affiliations

Authors

Contributions

AB conceptualised the work. SB performed the experiments. AB and SB wrote the manuscript. All the authors agreed to submit the manuscript.

Corresponding author

Correspondence to Angshuman Bagchi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to submit the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3828 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Bagchi, A. Study of the Effects of Nicotine and Caffeine for the Treatment of Parkinson’s Disease. Appl Biochem Biotechnol 195, 639–654 (2023). https://doi.org/10.1007/s12010-022-04155-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04155-5

Keywords

Navigation