Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 863))

Abstract

Parkinson’s disease (PD) is a common motor neurodegenerative disorder with multifactorial etiology that is an increasing burden on our aging society. PD is characterized by nigrostriatal degeneration which might involve oxidative stress, α-synuclein (αS) aggregation, dysregulation of redox metal homeostasis and neurotoxicity. Although the exact cause remains unknown, both genetic and environmental factors have been implicated. Among the various environmental factors tea consumption has attracted increasing interest, as besides being one of the most consumed beverages in the world, tea contains specific polyphenols which can play an important role in delaying the onset or halting the progression of PD. Green and black teas are rich sources of polyphenols, the most abundant being epigallocatechin-3-gallate (EGCG) and theaflavins. There is now consistent mechanistic data on the neuroprotective and neuroregenerative effects of tea polyphenols, indicating that they do not just possess anti-oxidant or anti-chelating properties but may directly interfere with aggregation of the αS protein and modulate intracellular signalling pathways, both in vitro and in animal models. EGCG in green tea has been by far the most studied compound and therefore future investigations should address more the effects of other polyphenols, especially theaflavins in black tea. Nevertheless, despite significant data on their potential neuroprotective effects, clinical studies are still very limited and to date only EGCG has reached phase II trials. This review collates the current knowledge of tea polyphenols and puts into perspective their potential to be considered as nutraceuticals that target various pathologies in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, Rice-Evans CA (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33(12):1693–1702

    CAS  PubMed  Google Scholar 

  • Adachi N, Tomonaga S, Tachibana T, Denbow DM, Furuse M (2006) (−)-Epigallocatechin gallate attenuates acute stress responses through GABAergic system in the brain. Eur J Pharmacol 531(1–3):171–175

    CAS  PubMed  Google Scholar 

  • Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18(1):75–81

    CAS  PubMed  Google Scholar 

  • Albani D, Polito L, Signorini A, Forloni G (2010) Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 36(5):370–376

    CAS  PubMed  Google Scholar 

  • Amit T, Avramovich-Tirosh Y, Youdim MBH, Mandel S (2008) Targeting multiple Alzheimer’s disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. FASEB J 22(5):1296–1305

    CAS  PubMed  Google Scholar 

  • Anandhan A, Janakiraman U, Manivasagam T (2012a) Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s disease. Neuroscience 218:257–267

    CAS  PubMed  Google Scholar 

  • Anandhan A, Tamilselvam K, Radhiga T, Rao S, Essa MM, Manivasagam T (2012b) Theaflavin, a black tea polyphenol, protects nigral dopaminergic nerons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res 1433:104–113

    CAS  PubMed  Google Scholar 

  • Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52(1):79–104

    CAS  PubMed  Google Scholar 

  • Ascherio A, Zhang SM, Hernan MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    CAS  PubMed  Google Scholar 

  • Astill C, Birch MR, Dacombe C, Humphrey PG, Martin PT (2001) Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J Agric Food Chem 49(11):5340–5347

    CAS  PubMed  Google Scholar 

  • Auger C, Mullen W, Hara Y, Crozier A (2008) Bioavailability of polyphenon E flavan-3-ols in humans with an ileostomy. J Nutr 138(8):1542

    Google Scholar 

  • Bae SY, Kim S, Hwang H, Kim HK, Yoon HC, Kim JH, Lee S, Kim TD (2010) Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR). Biochem Biophys Res Commun 400:531–536

    CAS  PubMed  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704

    CAS  PubMed  Google Scholar 

  • Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12(2):222–228

    CAS  PubMed  Google Scholar 

  • Bastianetto S (2002) Red wine consumption and brain aging. Nutrition 18(5):432–433

    CAS  PubMed  Google Scholar 

  • Bastianetto S, Quirion R (2004) Natural antioxidants and neurodegenerative diseases. Front Biosci 9:3447–3452

    CAS  PubMed  Google Scholar 

  • Bastianetto S, Yao Z-X, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23(1):55–64

    PubMed  Google Scholar 

  • Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133(10):3254

    Google Scholar 

  • Berhanu WM, Masunov AE (2010) Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer. Biophys Chem 149(1–2):12–21

    CAS  PubMed  Google Scholar 

  • Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 107:7710–7715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blazovics A, Lugasi A, Kemeny T, Hagymasi K, Kery A (2000) Membrane stabilising effects of natural polyphenols and flavonoids from Sempervivum tectorum on hepatic microsomal mixed-function oxidase system in hyperlipidemic rats. J Ethnopharmacol 73(3):479–485

    CAS  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    PubMed  Google Scholar 

  • Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    PubMed  Google Scholar 

  • Calixto JB, Campos MM, Otuki MF, Santos AR (2004) Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70(2):93–103

    CAS  PubMed  Google Scholar 

  • Camilleri A, Vassallo N (2014) The centrality of mitochondria in the pathogenesis and treatment of Parkinson’s disease. CNS Neurosci Ther 20(7):591–602

    CAS  PubMed  Google Scholar 

  • Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Hogen T, Schmidt F, Giese A, Vassallo N (2013) Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 1828(11):2532–2543

    CAS  PubMed  Google Scholar 

  • Campos-Esparza R, Torres-Ramos MA (2010) Neuroprotection by natural polyphenols: molecular mechanisms. Cent Nerv Syst Agents Med Chem 10:269–277

    CAS  Google Scholar 

  • Cao G, Giovanoni M, Prior RL (1996) Antioxidant capacity in different tissues of young and old rats. Proc Soc Exp Biol Med 211(4):359–365

    CAS  PubMed  Google Scholar 

  • Caruana M, Vassallo N (2011) The potential role of dietary polyphenols in Parkinson’s disease. Malta Med J 23(3):52–55

    Google Scholar 

  • Caruana M, Vassallo N (2014) Select polyphenols that protect mitochondria against amyloid aggregates in Alzheimer’s and Parkinson’s disease. Xjenza Online 2:17–25

    Google Scholar 

  • Caruana M, Hogen T, Levin J, Hillmer A, Giese A, Vassallo N (2011) Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585(8):1113–1120

    CAS  PubMed  Google Scholar 

  • Caruana M, Neuner J, Högen T, Schmidt F, Scerri C, Giese A, Vassallo N (2012) Polyphenolic compounds are novel protective agents against lipid membrane damage by α-synuclein aggregates in vitro. Biochim Biophys Acta 1818(11):2502–2510

    CAS  PubMed  Google Scholar 

  • Chan DK, Woo J, Ho SC, Pang CP, Law LK, Ng PW, Hung WT, Kwok T, Hui E, Orr K, Leung MF, Kay R (1998) Genetic and environmental risk factors for Parkinson’s disease in a Chinese population. J Neurol Neurosurg Psychiatry 65(5):781–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan P, Qin Z, Zheng Z, Zhang L, Fang X, Sun F, Gu Z, Chen S, Ma J, Meng C, Langston JW, Tanner CM (2009) A randomized, double-blind, placebo controlled, delayed start study to assess safety, tolerability and efficacy of green tea polyphenols in Parkinson’s disease. XVIII WFN World Congress on Parkinson’s Disease and Related Disorders, Miami Beach, 13–16 Dec 2009

    Google Scholar 

  • Chaturvedi RK, Shukla S, Seth K, Chauhan S, Sinha C, Shukla Y, Agrawal AK (2006) Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis 22(2):421–434

    CAS  PubMed  Google Scholar 

  • Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155(8):732–738

    PubMed  Google Scholar 

  • Chen CM, Lin JK, Liu SH, Lin-Shiau SY (2008) Novel regimen through combination of memantine and tea polyphenol for neuroprotection against brain excitotoxicity. J Neurosci Res 86(12):2696–2704

    CAS  PubMed  Google Scholar 

  • Chen R, Wang JB, Zhang XQ, Ren J, Zeng CM (2011) Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. Arch Biochem Biophys 507(2):343–349

    CAS  PubMed  Google Scholar 

  • Chen M, Wang T, Yue F, Li X, Wang P, Li Y, Chan P, Yu S (2014) Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience 286:383–392

    PubMed  Google Scholar 

  • Choi JY, Park CS, Kim DJ, Cho MH, Jin BK, Pie JE, Chung WG (2002) Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice by tea phenolic epigallocatechin 3-gallate. Neurotoxicology 23(3):367–374

    CAS  PubMed  Google Scholar 

  • Choi YJ, Jeong YJ, Lee YJ, Kwon HM, Kang YH (2005) (−)Epigallocatechin gallate and quercetin enhance survival signaling in response to oxidant-induced human endothelial apoptosis. J Nutr 135(4):707–713

    CAS  PubMed  Google Scholar 

  • Choi DY, Lee YJ, Hong JT, Lee HJ (2012) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull 87(2–3):144–153

    CAS  PubMed  Google Scholar 

  • Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9(9):3312–3319

    CAS  PubMed  Google Scholar 

  • Chow HH, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, Chew WM, Celaya CA, Rodney SR, Hara Y, Alberts DS (2005) Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 11(12):4627–4633

    CAS  PubMed  Google Scholar 

  • Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137(5):1244–1252

    CAS  PubMed  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294(5545):1346–1349

    CAS  PubMed  Google Scholar 

  • Costa J, Lunet N, Santos C, Santos J, Vaz-Carneiro A (2010) Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis 20:221–238

    Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26(8):1001–1043

    CAS  PubMed  Google Scholar 

  • D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–361

    PubMed  Google Scholar 

  • Dajas F, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, Morquio A, Heinzen H, Heizen H (2003) Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res 5(6):425–432

    PubMed  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    PubMed  Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    CAS  PubMed  Google Scholar 

  • Duchnowicz P, Bors M, Podsędek A, Koter-Michalak M, Broncel M (2012) Effect of polyphenols extracts from Brassica vegetables on erythrocyte membranes (in vitro study). Environ Toxicol Pharmacol 34(3):783–790

    CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    CAS  PubMed  Google Scholar 

  • Engel MFM, van den Akker CC, Schleeger M, Velikov KP, Koenderink GH, Bonn M (2012) The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution. J Am Chem Soc 134(36):14781–14788

    CAS  PubMed  Google Scholar 

  • Erdman JW, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, Harnly J, Hollman P, Keen CL, Mazza G, Messina M, Scalbert A, Vita J, Williamson G, Burrowes J (2007) Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr 137(3 Suppl 1):737

    Google Scholar 

  • Fall PA, Fredrikson M, Axelson O, Granérus AK (1999) Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case–control study in south eastern Sweden. Mov Disord 14:28–37

    CAS  PubMed  Google Scholar 

  • Faria A, Pestana D, Teixeira D, Couraud PO, Romero I, Weksler B, de Freitas V, Mateus N, Calhau C (2011) Insights into the putative catechin and epicatechin transport across blood–brain barrier. Food Funct 2(1):39–44

    CAS  PubMed  Google Scholar 

  • Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275–3284

    Google Scholar 

  • Friedman A, Galazka-Friedman J (2001) The current state of free radicals in Parkinson’s disease: nigral iron as a trigger of oxidative stress. Adv Neurol 86:137–142

    CAS  PubMed  Google Scholar 

  • Fukae J, Mizuno Y, Hattori N (2007) Mitochondrial dysfunction in Parkinson’s disease. Mitochondrion 7(1–2):58–62

    CAS  PubMed  Google Scholar 

  • Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A (2012) Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 78(15):1138–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gazit E (2002) A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    CAS  PubMed  Google Scholar 

  • Gerlach M, Maetzler W, Broich K, Hampel H, Rems L, Reum T, Riederer P, Stoffler A, Streffer J, Berg D (2012) Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics. J Neural Transm 119(1):39–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53(3):322–331

    CAS  PubMed  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21(3):334–350

    CAS  PubMed  Google Scholar 

  • Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J (2011) Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Biochemistry 50(49):10624–10636

    CAS  PubMed  Google Scholar 

  • Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B (2007) Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiatry 62(12):1353–1362

    CAS  PubMed  Google Scholar 

  • Haenen GR, Paquay JB, Korthouwer RE, Bast A (1997) Peroxynitrite scavenging by flavonoids. Biochem Biophys Res Commun 236(3):591–593

    CAS  PubMed  Google Scholar 

  • Hancock DB, Martin ER, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK (2007) Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease. Arch Neurol 64:576–580

    PubMed  Google Scholar 

  • Harbowy ME, Ballentine DA (1997) Tea chemistry. Crit Rev Plant Sci 16:415–480

    CAS  Google Scholar 

  • Hartmann A, Hirsch EC (2001) Parkinson’s disease. The apoptosis hypothesis revisited. Adv Neurol 86:143–153

    CAS  PubMed  Google Scholar 

  • Hendrich AB (2006) Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol Sin 27:27–40

    CAS  PubMed  Google Scholar 

  • Henning SM, Choo JJ, Heber D (2008) Nongallated compared with gallated flavan-3-ols in green and black tea are more bioavailable. J Nutr 138(8):1534

    Google Scholar 

  • Hernan MA, Takkouche B, Caamano-Isorna F, Gestal-Otero JJ (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52(3):276–284

    PubMed  Google Scholar 

  • Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342(8878):1007–1011

    CAS  PubMed  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43(1):89–143

    CAS  PubMed  Google Scholar 

  • Hollman PC, Van het Hof KH, Tijburg LB, Katan MB (2001) Addition of milk does not affect the absorption of flavonols from tea in man. Free Radic Res 34:297–300

    CAS  PubMed  Google Scholar 

  • Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J (2007) Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 22(15):2242–2248

    PubMed  Google Scholar 

  • Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen BH, Chen YT, Hung CF (2007) (−)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules 12(8):1845–1858

    CAS  PubMed  Google Scholar 

  • Hudson SA, Ecroyd H, Dehle FC, Musgrave IF, Carver JA (2009) (−)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. J Mol Biol 392(3):689–700

    CAS  PubMed  Google Scholar 

  • Hwang SL, Yen GC (2009) Modulation of Akt, JNK, and p38 activation is involved in citrus flavonoid-mediated cytoprotection of PC12 cells challenged by hydrogen peroxide. J Agric Food Chem 57:2576–2582

    CAS  PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376

    CAS  PubMed  Google Scholar 

  • Jeong JH, Kim HJ, Lee TJ, Kim MK, Park ES, Choi BS (2004) Epigallocatechin 3-gallate attenuates neuronal damage induced by 3-hydroxykynurenine. Toxicology 195(1):53–60

    CAS  PubMed  Google Scholar 

  • Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C (2010) The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochem Res 35:227–238

    CAS  PubMed  Google Scholar 

  • Johnston TH, Brotchie JM (2004) Drugs in development for Parkinson’s disease. Curr Opin Investig Drugs 5:720–726

    CAS  PubMed  Google Scholar 

  • Kandinov B, Giladi N, Korczyn AD (2009) Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 15(1):41–46

    PubMed  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909

    CAS  PubMed  Google Scholar 

  • Kazantsev AG, Kolchinsky AM (2008) Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson disease. Arch Neurol 65(12):1577–1581

    PubMed  Google Scholar 

  • Khokhar S, Magnusdottir SGM (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem 50(3):565–570

    CAS  PubMed  Google Scholar 

  • Kishido T, Unno K, Yoshida H, Choba D, Fukutomi R, Asahina S, Iguchi K, Oku N, Hoshino M (2007) Decline in glutathione peroxidase activity is a reason for brain senescence: consumption of green tea catechin prevents the decline in its activity and protein oxidative damage in ageing mouse brain. Biogerontology 8(4):423–430

    CAS  PubMed  Google Scholar 

  • Kumamoto M, Sonda T, Nagayama K, Tabata M (2001) Effects of pH and metal ions on antioxidative activities of catechins. Biosci Biotechnol Biochem 65(1): 126–132

    CAS  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013:162750

    PubMed Central  PubMed  Google Scholar 

  • Kyle JA, Morrice PC, McNeill G, Duthie GG (2007) Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. J Agric Food Chem 55(12):4889–4894

    CAS  PubMed  Google Scholar 

  • Kyoung AK, Zhi HW, Rui Z, Mei JP, Ki CK, Sam SK, Young WK, Jongsung L, Deokhoon P, Jin WH (2010) Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signalling pathways. Int J Mol Sci 11:4348–4360

    Google Scholar 

  • Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102

    CAS  PubMed  Google Scholar 

  • Leaver KR, Allbutt HN, Creber NJ, Kassiou M, Henderson JM (2009) Oral pre-treatment with epigallocatechin gallate in 6-OHDA lesioned rats produces subtle symptomatic relief but not neuroprotection. Brain Res Bull 80(6):397–402

    CAS  PubMed  Google Scholar 

  • Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomark Prev 11:1025–1032

    CAS  Google Scholar 

  • Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY (2001) Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr 131(9):2248–2251

    CAS  PubMed  Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    CAS  PubMed  Google Scholar 

  • Levites Y, Youdim MB, Maor G, Mandel S (2002a) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and celldeath by tea extracts in neuronal cultures. Biochem Pharmacol 63(1):21–29

    CAS  PubMed  Google Scholar 

  • Levites Y, Amit T, Youdim MB, Mandel S (2002b) Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277:30574–30580

    CAS  PubMed  Google Scholar 

  • Li S, Schoenberg BS, Wang CC, Cheng X-M, Rui D-Y, Bolis CL, Schoenberg BG (1985) A prevalence survey of Parkinson’s disease and other movement disorders in the People’s Republic of China. Arch Neurol 42:655–657

    CAS  PubMed  Google Scholar 

  • Li FJ, Ji HF, Shen L (2012) A meta-analysis of tea drinking and risk of Parkinson’s disease. Scientific World Journal 2012:923464

    PubMed Central  PubMed  Google Scholar 

  • Logroscino G (2005) The role of early life environmental risk factors in Parkinson disease: what is the evidence? Environ Health Perspect 113:1234–1238

    CAS  PubMed Central  PubMed  Google Scholar 

  • López-Lázaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9:31–59

    PubMed  Google Scholar 

  • Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41(12):1727–1746

    CAS  PubMed  Google Scholar 

  • Luczaj W, Skrzydlewska E (2005) Antioxidative properties of black tea. Prev Med 40:910–918

    CAS  PubMed  Google Scholar 

  • Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37:304–317

    CAS  PubMed  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. J Neurochem 88:1555–1569

    CAS  PubMed  Google Scholar 

  • Mandel SA, Amit T, Weinreb O, Reznichenko L, Youdim MBH (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 14(4):352–365

    CAS  PubMed  Google Scholar 

  • Masuda M, Suzuki N, Taniguchi S, Oikawa T, Nonaka T, Iwatsubo T, Hisanaga S-i, Goedert M, Hasegawa M (2006) Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 45(19):6085–6094

    CAS  PubMed  Google Scholar 

  • McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89

    CAS  PubMed  Google Scholar 

  • McKay DL, Blumberg JB (2002) The role of tea in human health: an update. JACN 21:1–13

    CAS  Google Scholar 

  • Meng X, Munishkina LA, Fink AL, Uversky VN (2009) Molecular mechanisms underlying the flavonoid-induced inhibition of alpha-synuclein fibrillation. Biochemistry 48(34):8206–8224

    CAS  PubMed  Google Scholar 

  • Meng X, Munishkina LA, Fink AL, Uversky VN (2010) Effects of various flavonoids on the α-synuclein fibrillation process. Parkinsons Dis 2010:650794

    PubMed Central  PubMed  Google Scholar 

  • Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69(2):339–345

    CAS  PubMed  Google Scholar 

  • Moon JK, Shibamoto T (2009) Antioxidant assays for plant and food components. J Agric Food Chem 57(5):1655–1666

    CAS  PubMed  Google Scholar 

  • Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ (2008) (−)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch Biochem Biophys 476(2):171–177

    CAS  PubMed  Google Scholar 

  • Nakagawa K, Miyazawa T (1997) Absorption and distribution of tea catechin, (−)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol (Tokyo) 43(6):679–684

    CAS  Google Scholar 

  • Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40(12):1745–1750

    CAS  PubMed  Google Scholar 

  • Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21:895–902

    CAS  PubMed  Google Scholar 

  • Obrenovich ME, Nair NG, Beyaz A, Aliev G, Reddy VP (2010) The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 13(6):631–643

    CAS  PubMed  Google Scholar 

  • Oku N, Matsukawa M, Yamakawa S, Asai T, Yahara S, Hashimoto F, Akizawa T (2003) Inhibitory effect of green tea polyphenols on membrane-type 1 matrix metalloproteinase, MT1-MMP. Biol Pharm Bull 26(9):1235–1238

    CAS  PubMed  Google Scholar 

  • Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, Langston W, Melamed E, Poewe W, Stocchi F, Tolosa E, ADAGIO Study Investigators (2009) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 361(13):1268–1278

    CAS  PubMed  Google Scholar 

  • Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 97:105–115

    CAS  PubMed  Google Scholar 

  • Paganini-Hill A (2001) Risk factors for Parkinson’s disease: the Leisure World cohort study. Neuroepidemiology 20:118–124

    CAS  PubMed  Google Scholar 

  • Pan T, Jankovic J, Le W (2003) Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging 20(10):711–721

    CAS  PubMed  Google Scholar 

  • Pan T, Fei J, Zhou X, Jankovic J, Le W (2004) Effects of green tea polyphenols on dopamine uptake and on MPPS-induced dopamine neuron injury. Life Sci 72:1073–1083

    Google Scholar 

  • Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB (2007) Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci 27(12):3338–3346

    CAS  PubMed  Google Scholar 

  • Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53(2):75–7100

    CAS  PubMed  Google Scholar 

  • Perron NR, Hodges JN, Jenkins M, Brumaghim JL (2008) Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem 47(14):6153–6161

    CAS  PubMed  Google Scholar 

  • Perron NR, Wang HC, Deguire SN, Jenkins M, Lawson M, Brumaghim JL (2010) Kinetics of iron oxidation upon polyphenol binding. Dalton Trans 39(41):9982–9987

    CAS  PubMed  Google Scholar 

  • Porat Y, Mazor Y, Efrat S, Gazit E (2004) Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions. Biochemistry 43(45):14454–14462

    CAS  PubMed  Google Scholar 

  • Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67(1):27–37

    CAS  PubMed  Google Scholar 

  • Preux PM, Condet A, Anglade C, Druet-Cabanac M, Debrock C, Macharia W, Couratier P, Boutros-Toni F, Dumas M (2000) Parkinson’s disease and environmental factors. Matched caseecontrol study in the Limousin region, France. Neuroepidemiology 19(6):333–337

    CAS  PubMed  Google Scholar 

  • Quintana BJ, Allam MF, Del Castillo AS, Navajas RF (2009) Parkinson’s disease and tea: a quantitative review. J Am Coll Nutr 28(1):1–6

    CAS  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102(30):10427–10432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman M, Riaz M, Desai UR (2007) Synthesis of biologically relevant biflavanoids; a review. Chem Biodivers 4:2495–2527

    CAS  PubMed  Google Scholar 

  • Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64

    CAS  PubMed  Google Scholar 

  • Ramsden DB, Parsons RB, Ho SL, Waring RH (2001) The aetiology of idiopathic Parkinson’s disease. Mol Pathol 54(6):369–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reznichenko L, Amit T, Youdim MBH, Mandel S (2005) Green tea polyphenol (−)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 93(5):1157–1167

    CAS  PubMed  Google Scholar 

  • Reznichenko L, Kalfon L, Amit T, Youdim MBH, Mandel SA (2010) Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in MPTP-induced parkinsonism. Neurodegener Dis 7(4):219–231

    CAS  PubMed  Google Scholar 

  • Rietveld A, Wiseman S (2003) Antioxidant effects of tea: evidence from human clinical trials. J Nutr 133:3285–3292

    Google Scholar 

  • Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D, Van Den Eeden SK, Gorell J (2007) Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol 64(7):990–997

    PubMed  Google Scholar 

  • Roowi S, Stalmach A, Mullen W, Lean ME, Edwards CA, Crozier A (2010) Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. J Agric Food Chem 58:1296–1304

    CAS  PubMed  Google Scholar 

  • Saaksjarvi K, Knekt P, Rissanen H, Laaksonen MA, Reunanen A, Mannisto S (2008) Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr 62:908–915

    CAS  PubMed  Google Scholar 

  • Saura-Calixto F, Serrano J, Goñi I (2007) Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem 101:492–501

    CAS  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8S Suppl):85

    Google Scholar 

  • Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306

    CAS  PubMed  Google Scholar 

  • Schaffer S, Halliwell B (2012) Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr 7(2):99–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrag A, Ben-Shlomo Y, Quinn N (2002) How valid is the clinical diagnosis of Parkinson’s disease in the community? J Neurol Neurosurg Psychiatry 73:529–534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeter H, Bahia P, Spencer JPE, Sheppard O, Rattray M, Cadenas E, Rice-Evans C, Williams RJ (2007) (−)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 101(6):1596–1606

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma M, Dhamgaye S, Singh A, Prasad R (2012) Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis. Front Biosci 4:1195–1209

    Google Scholar 

  • Shults CW (2006) Lewy bodies. Proc Natl Acad Sci U S A 103:1661–1668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sirk TW, Brown EF, Sum AK, Friedman M (2008) Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes. J Agric Food Chem 56:7750–7758

    CAS  PubMed  Google Scholar 

  • Sirk TW, Friedman M, Brown EF (2011) Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. J Agric Food Chem 59(8):3780–3787

    CAS  PubMed  Google Scholar 

  • Skovronsky DM, Lee VM, Trojanowski JQ (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol Mech Dis 1:151–170

    CAS  Google Scholar 

  • Song WO, Chun OK (2008) Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J Nutr 138(8):1547

    Google Scholar 

  • Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4:49–60

    CAS  PubMed  Google Scholar 

  • Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz Patino AM, Labaneira-Garcıa JL (2000) Autoxidation and neurotoxicity of 6-hydrodoe in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    CAS  PubMed  Google Scholar 

  • Spencer JPE (2008) Flavonoids: modulators of brain function? Br J Nutr 99:60–77

    Google Scholar 

  • Spencer JPE, Vauzour D, Rendeiro C (2009) Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 492(1–2):1–9

    CAS  PubMed  Google Scholar 

  • Stalmach A, Troufflard S, Serafini M, Crozier A (2009) Absorption, metabolism and excretion of Choladi green tea flavan-3-ols by humans. Mol Nutr Food Res 53(Suppl 1):44–53

    Google Scholar 

  • Stevenson DE, Hurst RD (2007) Polyphenolic phytochemicals – just antioxidants or much more? Cell Mol Life Sci 64:2900–2916

    CAS  PubMed  Google Scholar 

  • Sumpio BE, Cordova AC, Berke-Schlessel DW, Qin F, Chen QH (2006) Green tea, the “Asian paradox,” and cardiovascular disease. J Am Coll Surg 202(5):813–825

    PubMed  Google Scholar 

  • Tan EK, Tan C, Fook-Chong SMC, Lum SY, Chai A, Chung H, Shen H, Zhao Y, Teoh ML, Yih Y, Pavanni R, Chandran VR, Wong MC (2003) Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216(1):163–167

    PubMed  Google Scholar 

  • Tan LC, Koh W-P, Yuan J-M, Wang R, Au W-L, Tan JH, Tan E-K, Yu MC (2008) Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 167(5):553–560

    PubMed Central  PubMed  Google Scholar 

  • Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW (1999) Parkinson disease in twins: an etiologic study. JAMA 281:341–346

    CAS  PubMed  Google Scholar 

  • Tanner CM, Goldman SM, Aston DA, Ottman R, Ellenberg J, Mayeux R, Langston JW (2002) Smoking and Parkinson’s disease in twins. Neurology 58(4):581–588

    CAS  PubMed  Google Scholar 

  • Toda T (2007) Molecular genetics of Parkinson’s disease. Brain Nerve 59(8):815–823

    CAS  PubMed  Google Scholar 

  • Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vafeiadou K, Vauzour D, Spencer JPE (2007) Neuroinflammation and its modulation by flavonoids. Endocr Metab Immune Disord Drug Targets 7(3): 211–224

    CAS  PubMed  Google Scholar 

  • Vassallo N (ed) (2008) Polyphenols and health: new and recent advantages. Nova, New York

    Google Scholar 

  • Vauzour D (2012) Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012:914273

    PubMed Central  PubMed  Google Scholar 

  • Vauzour D, Vafeiadou K, Rice-Evans C, Williams RJ, Spencer JP (2007) Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem 103(4):1355–1367

    CAS  PubMed  Google Scholar 

  • Vauzour D, Ravaioli G, Vafeiadou K, Rodriguez-Mateos A, Angeloni C, Spencer JPE (2008) Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: implications for Parkinson’s disease and protection by polyphenols. Arch Biochem Biophys 476(2):145–151

    CAS  PubMed  Google Scholar 

  • Verstraeten SV, Keen CL, Schmitz HH, Fraga CG, Oteiza PI (2003) Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic Biol Med 34(1):84–92

    CAS  PubMed  Google Scholar 

  • Wang H, Helliwell K (2001) Determination of flavonols in green and black tea leaves and green tea infusions by high performance liquid chromatography. Food Res Int 34(2–3):223–227

    CAS  Google Scholar 

  • Wang SH, Liu FF, Dong XY, Sun Y (2010) Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (−)-epigallocatechin-3-gallate. J Phys Chem B 114(35):11576–11583

    CAS  PubMed  Google Scholar 

  • Weinreb O, Mandel S, Amit T, Youdim MB (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516

    CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Youdim MB (2008) The application of proteomics for studying the neurorescue activity of the polyphenol (−)-epigallocatechin-3-gallate. Arch Biochem Biophys 476:152–160

    CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MB (2010) Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 13:919–949

    CAS  PubMed  Google Scholar 

  • Wheeler DS, Wheeler WJ (2004) The medicinal chemistry of tea. Drug Dev Res 61:45–65

    CAS  Google Scholar 

  • Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36(7):838–849

    CAS  PubMed  Google Scholar 

  • Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81(Suppl 1):243–255

    Google Scholar 

  • Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108: 4194–4199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wirdefeldt K, Gatz M, Schalling M, Pedersen NL (2004) No evidence for heritability of Parkinson disease in Swedish twins. Neurology 63(2):305–311

    PubMed  Google Scholar 

  • Wirdefeldt K, Adami H-O, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):1–58

    Google Scholar 

  • Wu AH, Arakawa K, Stanczyk FZ, Van Den Berg D, Koh WP, Yu MC (2005) Tea and circulating estrogen levels in postmenopausal Chinese women in Singapore. Carcinogenesis 26(5):976–980

    CAS  PubMed  Google Scholar 

  • Xi YD, Yu HL, Ding J, Ma WW, Yuan LH, Feng JF, Xiao YX, Xiao R (2012) Flavonoids protect cerebrovascular endothelial cells through Nrf2 and PI3K from β-amyloid peptide-induced oxidative damage. Curr Neurovasc Res 9(1):32–41

    CAS  PubMed  Google Scholar 

  • Yang D, Liu J, Tian C, Zeng Y, Zheng YH, Fang Q, Li HH (2010) Epigallocatechin gallate inhibits angiotensin II-induced endothelial barrier dysfunction via inhibition of the p38 MAPK/ HSP27 pathway. Acta Pharmacol Sin 31:1401–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    CAS  PubMed  Google Scholar 

  • Zhang ZX, Román GC (1993) Worldwide occurrence of Parkinson’s disease: an updated review. Neuroepidemiology 12(4):195–208

    CAS  PubMed  Google Scholar 

  • Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem 279(26):26846–26857

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Caruana Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caruana, M., Vassallo, N. (2015). Tea Polyphenols in Parkinson’s Disease. In: Vassallo, N. (eds) Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases. Advances in Experimental Medicine and Biology, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-319-18365-7_6

Download citation

Publish with us

Policies and ethics