Skip to main content

Advertisement

Log in

Seasonal Variation of Soil Quality in a Semi-deciduous Northern Tropical Forest of Nagaland, India

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To assess the seasonal changes in soil parameters and the soil quality of a semi-deciduous forest in Nagaland, tropical forest soil samples were tested for 10 physical and chemical variables. Apart from clay content, EC, and CEC, the rest of the parameters showed a seasonal mean significant difference at p < .05 level. Based on the principal component analysis, available nitrogen (Nav) and electrical conductivity (EC) were included in a minimum data set and are regarded to best represent the system attributes. In both additive and weighted soil quality method, maximum SQI was recorded in autumn season. The research summarized that seasonal variations can influence soil characteristics and soil quality through its aggregate effects. Considering the result obtained from the present study, the approach we have used in soil quality assessment would be suitable for primarily screening the tropical forest soil status. This would ultimately pave ways for future management and mitigation plans to facilitate the improvement of forest health and aid to biodiversity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data made available on reasonable request.

References

  1. FAO and UNEP (2020). The state of the world’s forests, forests, biodiversity and people, Rome, p 214.

  2. Bhatt, B. P., & Sachan, M. S. (2004). Firewood consumption pattern of different tribal communities in northeast India. Energy Policy, 32, 1–6.

    Article  Google Scholar 

  3. Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology and Evolution, 15, 332–337.

    Article  CAS  PubMed  Google Scholar 

  4. Kanae, S., Oki, T., & Musiake, K. (2001). Impact of deforestation on regional precipitation over the Indochina Peninsula. Journal of Hydrometeorology, 2, 51–70.

    Article  Google Scholar 

  5. Schoenholtz, S. H., Van-Miegroet, H., & Burger, J. A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138, 335–356.

    Article  Google Scholar 

  6. Moffat, A. J. (2003). Indicators of soil quality for UK forestry. Forestry, 76, 1–22.

    Article  Google Scholar 

  7. Garrigues, E., Corson, M. S., Angers, D. A., van der Werf, H. M. G., & Walter, C. (2012). Soil quality in life cycle assessment: Towards development of an indicator. Ecological Indicators, 18, 434–442.

    Article  CAS  Google Scholar 

  8. Asensio, V., Guala, S. D., Vega, F. L., & Covelo, E. F. (2013). A soil quality index for reclaimed mine soils. Environment Toxicology and Chemistry, 32, 2240–2248.

    Article  CAS  Google Scholar 

  9. Klimkowicz-Pawlas, A., Ukalska-Jaruga, A., & Smreczak, B. (2019). Soil quality index for agricultural areas under different levels of anthropopressure. International Agrophysics, 33, 455–462.

    Article  CAS  Google Scholar 

  10. Karlen, D. L., Andrews, S. S., & Doran, J. W. (2001). Soil quality: Current concepts and applications. Advances in Agronomy, 74, 1–40.

    Article  CAS  Google Scholar 

  11. Armenise, E., Redmile-Gordon, A. M., Stellacci, A., & Rubino, C. P. (2013). Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130, 91–98.

    Article  Google Scholar 

  12. Vasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M., & Anantwar, S. G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79.

    Article  CAS  Google Scholar 

  13. Bastida, F., Zsolnay, A., Hernandez, T., & Garcia, C. (2008). Past, present and future of soil quality indices: A biological perspective. Geoderma, 147, 159–171.

    Article  CAS  Google Scholar 

  14. Viana, R. M., Ferraz, J. B., Neves, A. F., Jr., Vieira, G., & Pereira, B. F. (2014). Soil quality indicators for different restoration stages on Amazon rainforest. Soil and Tillage Research, 140, 1–7.

    Article  Google Scholar 

  15. Mishra, G., Marzaioli, R., Giri, K., & Pandey, S. (2018). Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland, India. Journal of Forestry Research, 30, 1–7.

    Google Scholar 

  16. Liu, Z., Zhou, W., Shen, J., Li, S., & Ai, C. (2014). Soil quality assessment of yellow clayey paddy soils with different productivity. Biology and Fertility of Soils, 50, 537–548.

    Article  Google Scholar 

  17. Rayo, I., Herrera, E., Moreno, C. H., & Plazola, R. G. (2017). Soil quality indicators to evaluate soil fertility. Agrociencia, 51, 813–831.

    Google Scholar 

  18. Triantafyllidis, V., Kosma, A. K. C., & Patakas, A. (2018). An assessment of the soil quality index in a Mediterranean agro ecosystem. Emirates Journal of Food and Agriculture, 30, 1042–1050.

    Google Scholar 

  19. Guo, X. M., Zhao, T. Q., Chang, W. K., Xiao, C. Y., & He, Y. X. (2018). Evaluating the effect of coal mining subsidence on the agricultural soil quality using principal component analysis. Chilean Journal Agriculture Research, 78, 173–182.

    Article  Google Scholar 

  20. Bhardwaj, A. K., Jasrotia, P., Hamilton, S. K., & Robertson, G. P. (2011). Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agriculture Ecosystem and Environment, 3, 419–429.

    Article  Google Scholar 

  21. Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2007). Soil quality response to long-term nutrient and crop management on a semiarid inceptisol. Agriculture Ecosystem and Environment, 118, 30–142.

    Article  Google Scholar 

  22. DEFCC (Department of Environment, Forest & Climate Change) (2018). Government of Nagaland, Status of forest report.

  23. Perumal, M., Wasli, M. E., Ying, H. S., Lat, J., & Sani, H. (2015). Soil Morphological and physicochemical properties at reforestation sites after enrichment planting of Shorea Macrophylla in Sampadi forest reserve, Sarawak, Malaysia. Borneo Journal of Resource Science and Technology, 5, 28–43.

    Article  Google Scholar 

  24. Semy, K., & Singh, M. R. (2021). Quality assessment of Tsurang River water affected by coal mining along the Tsurangkong Range, Nagaland, India. Applied Water Science, 11, 115.

    Article  CAS  Google Scholar 

  25. Misra, R. (1968). Ecology workbook (p. 235). Oxford and IBH Publishing.

    Google Scholar 

  26. Piper, C. S. (1942). Soil and plant analysis. Laboratory manual of methods for the examination of soils and the determination of the inorganic constituents of plants. University of Adelaide.

    Google Scholar 

  27. Allen, S. E. (1989). Analysis of soils. In Allen SE (ed) Chemical analysis of ecological materials. Blackwell Scientific Publications.

  28. Walkley, A. J., & Black, I. A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  29. Kjeldahl, J. (1883). (New method for the determination of nitrogen in organic substances). Zeitschrift für analytische Chemie, 22, 366–383.

    Article  Google Scholar 

  30. Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59, 39–45.

    Article  CAS  Google Scholar 

  31. Trivedy, R. K., & Goel, P. K. (1986). Chemical and biological method for water pollution studies. Environmental Publication, 6, 10–12.

  32. Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Sciences, 73, 251–261.

    Article  CAS  Google Scholar 

  33. Andrews, S. S., Flora, C. B., Mitchell, J. P., & Karlen, D. L. (2003). Grower’s perceptions and acceptance of soil quality indices. Geoderma, 114, 187–213.

    Article  Google Scholar 

  34. Marzaioli, R., D’Ascoli, R., DePascale, R. A., & Rutigliano, F. A. (2010). Soil quality in a Mediterranean area of Southern Italy as related to different land-use types. Applied Soil Ecology, 44, 205–212.

    Article  Google Scholar 

  35. Hammer, D. A. T., Harper, P. D., & Ryan, P. A. S. T. (2001). Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  36. Mandal, U. K., Warrington, D. N., Bhardwaj, A. K., Bar-Ta, A., Kautsky, L., & Minz, D. (2008). Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma, 144, 189–197.

    Article  CAS  Google Scholar 

  37. Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482–494.

    Article  CAS  Google Scholar 

  38. Sharma, K. L., Mandal, U. K., Srinivas, K., Vittal, K. P. R., Mandal, B., & Grace, J. K. (2005). Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil Tillage Research, 83, 246–259.

    Article  Google Scholar 

  39. Kadir, S., Ishizuka, I., Sakurai, K., Tanaka, S., Kubota, S., Hirota, M., & Priatna, S. J. (2001). Characterization of ultisols under different wildfire in South Sumatra, Indonesia, physico-chemical properties. Tropics, 10, 565–580.

    Article  Google Scholar 

  40. Amacher, M. C., & Perry, C. H. (2007). Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health. Res. Pap. RMRS-RP-65WWW (p. 12). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Book  Google Scholar 

  41. Feiza, V., Feiziene, D., Kadziene, G., Lazauskas, S., & Deveikyte, I. (2011). Soil state in the 11th year of three tillage systems application on a cambisol. Journal of Food Agriculture and Environment, 9, 1088–1095.

    CAS  Google Scholar 

  42. Lal, R. (1994). Methods and guidelines for assessing sustainable use of soil and water resources in the tropics. USDA/SMSS Technical Monograph 21.

  43. DACMA (Department of Agriculture and Cooperation Ministry of Agriculture) (2011). Government of India. Methods manual soil testing in India, New Delhi.

  44. Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155–176.

    Article  CAS  Google Scholar 

  45. Semy, K., & Singh, M. R. (2021). Comparative assessment on physico-chemical properties of coal mining affected and non-affected forest soil at Changki. Indian Journal of Ecology, 48, 36–42.

    Google Scholar 

  46. Kaur, B., Gupta, S. R., & Singh, G. (2000). Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in Northern India. Applied Soil Ecology, 15, 283–294.

    Article  Google Scholar 

  47. Filip, Z. (2002). International approach to assessing soil quality by ecologically-related biological parameters. Agriculture Ecosystem and Environment, 88, 169–174.

    Article  Google Scholar 

  48. Zaidey, A. K., Arifin, A., Zahari, I., Hazandy, A. H., Zaki, M. H., Hassan, A., Wasli, M. E., Hafiz, Y. K., Shamshuddin, J., & Muhamad, M. N. (2010). Characterizing soil properties of lowland and hill Dipeterocarp forests at Peninsular Malaysia. International Journal of Soil Science, 5, 112–130.

    Article  CAS  Google Scholar 

  49. Yao, R., Yang, J., Gao, P., Zhang, J., & Jin, W. (2013). Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil Tillage Research, 128, 137–148.

    Article  Google Scholar 

  50. Zhang, G. L., Bai, J. H., Xi, M., Zhao, Q. Q., Lu, Q. Q., & Jia, J. (2016). Soil quality assessment of coastal wetlands in the yellow river delta of China based on the minimum data set. Ecological Indicator, 66, 458–466.

    Article  CAS  Google Scholar 

  51. Jiang, M., Xu, L., Chen, X., Zhu, H., & Fan, H. (2020). Soil quality assessment based on a minimum data set: A case study of a county in the typical river Delta Wetlands. Sustainability, 12, 9033.

    Article  CAS  Google Scholar 

  52. Rahmanipoura, R., Marzaiolib, R., Bahramia, H. A., Fereidounia, Z., & Bandarabadic, S. R. (2013). Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators, 40, 19–26.

    Article  Google Scholar 

  53. Tian, Y., Xu, Z., Wang, J., & Wang, Z. (2022). Evaluation of soil quality for different types of land use based on minimum dataset in the typical desert Steppe in Ningxia, China. Journal of Advanced Transportation, Article ID 7506189, 1–14.

  54. Mukhopadhyay, S., Masto, R. E., Yadav, A., George, J., Ram, L. C., & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of Total Environment, 542, 540–550.

    Article  CAS  Google Scholar 

  55. Semy, K., Singh, M. R., & Vats, N. (2021). Evaluation of soil quality of a coal mine affected forest at Changki, Nagaland, India. Journal of Environmental Engineering and Landscape Management, 29, 381–390.

    Article  Google Scholar 

Download references

Acknowledgements

UGC SAP DRS-III, New Delhi, Government of India, is duly acknowledged for the financial assistance to the Department of Botany, Nagaland University.

Funding

The research work is financially supported by the Council of Science and Industrial Research (CSIR), Government of India, National Eligibility Test (NET) JRF-fellowship, File no: 09/763(0012)/2017-EMR-1.

Author information

Authors and Affiliations

Authors

Contributions

Khikeya Semy: Field work, experiments and construction of manuscript.

MR Singh: Supervision of the work, reviewing and editing of manuscript.

Wati Lemla: Data analysis and methodology.

Wati Temjen: Formula analysis and methodology.

Corresponding author

Correspondence to Khikeya Semy.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semy, K., Singh, M.R., Lemla, W. et al. Seasonal Variation of Soil Quality in a Semi-deciduous Northern Tropical Forest of Nagaland, India. Appl Biochem Biotechnol 195, 2359–2370 (2023). https://doi.org/10.1007/s12010-022-04106-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04106-0

Keywords

Navigation