Skip to main content
Log in

Practical and Rapid Membrane-Based Biosensor for Phenol Using Copper/Calcium-Enzyme Hybrid Nanoflowers

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phenol, a pollutant frequently found in chemical industries effluents, is highly toxic even in low concentrations. This study reports a green, simple, and rapid method for qualitative phenol biosensing using horseradish peroxidase (HRP) hybrid nanoflowers made with copper (Cu2+-hNF) or calcium (Ca2+-hNF) ions. The enzyme was immobilized through protein-inorganic self-assembly into hybrid structures and subsequently supported onto a polyvinylidene fluoride (PVDF) membrane. SEM, EDS, FTIR, and XRD techniques sustained the effective enzyme encapsulation into hybrid structures. The protein concentration in the structures was 0.25 mg.mL−1 for both ions. The best temperature and pH were 60 °C and 7.4, respectively, for both hybrids and the free enzyme, suggesting that the immobilization did not affect the optimal conditions of the free HRP. Thermal stability from 25 to 70 °C and pH stability from 4.0 to 9.0 of the hybrids were also determined. Finally, using copper and calcium hybrids, both biosensors produced onto a PVDF membrane could detect phenol in concentrations ranging from 0.72 to 24.00 µmol.mL−1 in 1 min. In contrast, control biosensors produced with free enzyme have not presented a visible color change in the same conditions. The findings suggest a promising application of the developed biosensors in functional phenol detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li, X., Li, S., Liang, X., McClements, D. J., Liu, X., & Liu, F. (2020). Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase. Trends in Food Science and Technology, 103(March), 78–93.

    Article  CAS  Google Scholar 

  2. Zhu, Y., Tao, H., Janaswamy, S., Zou, F., Cui, B., & Guo, L. (2021). The functionality of laccase- or peroxidase-treated potato flour: Role of interactions between protein and protein/starch. Food Chemistry, 341(February 2020), 128082.

    Article  CAS  Google Scholar 

  3. BagheriPebdeni, A., & Hosseini, M. (2020). Fast and selective whole cell detection of Staphylococcus aureus bacteria in food samples by paper based colorimetric nanobiosensor using peroxidase-like catalytic activity of DNA-Au/Pt bimetallic nanoclusters. Microchemical Journal, 159(September), 105475.

    Article  CAS  Google Scholar 

  4. Touahar, I. E., Haroune, L., Ba, S., Bellenger, J. P., & Cabana, H. (2014). Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Science of the Total Environment, 481, 90–99.

    Article  CAS  Google Scholar 

  5. Poliakov, A. E., Dumshakova, A. V., Muginova, S. V., & Shekhovtsova, T. N. (2011). A peroxidase-based method for the determination of dopamine, adrenaline, and α-methyldopa in the presence of thyroid hormones in pharmaceutical forms. Talanta, 84(3), 710–716.

    Article  CAS  Google Scholar 

  6. Na, S. Y., & Lee, Y. (2017). Elimination of trace organic contaminants during enhanced wastewater treatment with horseradish peroxidase/hydrogen peroxide (HRP/H2O2) catalytic process. Catalysis Today, 282, 86–94.

    Article  CAS  Google Scholar 

  7. Al-Dhabi, N. A., Esmail, G. A., & Valan Arasu, M. (2021). Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor. Chemosphere, 268, 128726.

    Article  CAS  Google Scholar 

  8. Yadav, N., Govindwar, S. P., Rane, N., Ahn, H.-J., Xiong, J.-Q., Jang, M., … Jeon, B.-H. (2021). Insights on the role of periphytic biofilm in synergism with Iris pseudacorus for removing mixture of pharmaceutical contaminants from wastewater.Journal of Hazardous Materials, 418(March), 126349.

  9. Garg, S., Kumar, P., Singh, S., Yadav, A., Dumée, L. F., Sharma, R. S., & Mishra, V. (2020). Prosopis juliflora peroxidases for phenol remediation from industrial wastewater — An innovative practice for environmental sustainability. Environmental Technology and Innovation, 19, 100865.

    Article  Google Scholar 

  10. Darwesh, O. M., Matter, I. A., & Eida, M. F. (2019). Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. Journal of Environmental Chemical Engineering, 7(1), 102805.

    Article  CAS  Google Scholar 

  11. de Oliveira, F. K., Santos, L. O., & Buffon, J. G. (2021). Mechanism of action, sources, and application of peroxidases. Food Research International, 143(March), 110266.

    Article  Google Scholar 

  12. Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society reviews, 42(15), 6223–6235.

    Article  CAS  Google Scholar 

  13. Ge, J., Lei, J., & Zare, R. N. (2012). Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 7(7), 428–432.

    Article  CAS  Google Scholar 

  14. Maurya, S. S., Nadar, S. S., & Rathod, V. K. (2020). Dual activity of laccase-lysine hybrid organic–inorganic nanoflowers for dye decolourization. Environmental Technology and Innovation, 19, 100798.

    Article  Google Scholar 

  15. Wang, S., Ding, Y., Chen, R., Hu, M., Li, S., Zhai, Q., & Jiang, Y. (2018). Multilayer petal-like enzymatic-inorganic hybrid micro-spheres [CPO-(Cu/Co/Cd)3(PO4)2] with high bio-catalytic activity. Chemical Engineering Research and Design, 134(620), 52–61.

    Article  CAS  Google Scholar 

  16. Rong, J., Zhang, T., Qiu, F., & Zhu, Y. (2017). Preparation of Efficient, stable, and reusable laccase-Cu 3 (PO 4) 2 hybrid microspheres based on copper foil for decoloration of Congo red. ACS Sustainable Chemistry and Engineering, 5(5), 4468–4477.

    Article  CAS  Google Scholar 

  17. Patel, S. K. S., Otari, S. V., Li, J., Kim, D. R., Kim, S. C., Cho, B. K., … Lee, J. K. (2018). Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. Journal of Hazardous Materials, 347, 442–450.

  18. Wang, A., Chen, X., Yu, J., Li, N., Li, H., Yin, Y., … Wu, S. G. (2020). Green preparation of lipase@Ca3(PO4)2 hybrid nanoflowers using bone waste from food production for efficient synthesis of clindamycin palmitate. Journal of Industrial and Engineering Chemistry, 89, 383–391.

  19. Zhang, Y., Sun, W., Elfeky, N. M., Wang, Y., Zhao, D., Zhou, H., …Bao, Y. (2020). Self-assembly of lipase hybrid nanoflowers with bifunctional Ca2+ for improved activity and stability. Enzyme and Microbial Technology, 132(2), 109408.

  20. He, X., Chen, L., He, Q., Xiao, H., Zhou, X., & Ji, H. (2017). Cytochrome P450 enzyme-copper phosphate hybrid nano-flowers with superior catalytic performances for selective oxidation of sulfides. Chinese Journal of Chemistry, 35(5), 693–698.

    Article  CAS  Google Scholar 

  21. Li, W. Y., Lu, S. Y., Bao, S. J., Shi, Z. Z., Lu, Z., Li, C. M., & Yu, L. (2018). Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose. Biosensors and Bioelectronics, 99(August 2017), 603–611.

    Article  CAS  Google Scholar 

  22. Cheon, H. J., Adhikari, M. D., Chung, M., Tran, T. D., Kim, J., & Kim, M. I. (2019). Magnetic nanoparticles-embedded enzyme-inorganic hybrid nanoflowers with enhanced peroxidase-like activity and substrate channeling for glucose biosensing. Advanced Healthcare Materials, 8(9), 1–8.

    Article  Google Scholar 

  23. Batule, B. S., Park, K. S., Gautam, S., Cheon, H. J., Kim, M. I., & Park, H. G. (2019). Intrinsic peroxidase-like activity of sonochemically synthesized protein copper nanoflowers and its application for the sensitive detection of glucose. Sensors and Actuators, B: Chemical, 283(June 2018), 749–754.

    Article  CAS  Google Scholar 

  24. Zhang, M., Yang, N., Liu, Y., & Tang, J. (2019). Synthesis of catalase-inorganic hybrid nanoflowers via sonication for colorimetric detection of hydrogen peroxide. Enzyme and Microbial Technology, 128(March), 22–25.

    Article  CAS  Google Scholar 

  25. Altinkaynak, C., Yilmaz, I., Koksal, Z., Özdemir, H., Ocsoy, I., & Özdemir, N. (2016). Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. International Journal of Biological Macromolecules, 84, 402–409.

    Article  CAS  Google Scholar 

  26. Ye, R., Zhu, C., Song, Y., Song, J., Fu, S., Lu, Q., … Lin, Y. (2016). One-pot bioinspired synthesis of all-inclusive protein-protein nanoflowers for point-of-care bioassay: Detection of: E. coli O157:H7 from milk. Nanoscale, 8(45), 18980–18986.

  27. Gay, N. H., Phopin, K., Suwanjang, W., Songtawee, N., Ruankham, W., Wongchitrat, P., & Prachayasittikul, V. (2018). Neuroprotective effects of phenolic and carboxylic acids on oxidative stress-induced toxicity in human neuroblastoma SH-SY5Y cells. Neurochemical Research, 43(3), 619–636.

    Article  CAS  Google Scholar 

  28. Jun, L. Y., Yon, L. S., Mubarak, N. M., Bing, C. H., Pan, S., Danquah, M. K., & Khalid, M. (2019). An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. Journal of Environmental Chemical Engineering, 7(2):102961

  29. Arciuli, M., Palazzo, G., Gallone, A., & Mallardi, A. (2013). Bioactive paper platform for colorimetric phenols detection. Sensors and Actuators, B: Chemical, 186, 557–562.

    Article  CAS  Google Scholar 

  30. Guan, Y., Liu, L., Chen, C., Kang, X., & Xie, Q. (2016). Effective immobilization of tyrosinase via enzyme catalytic polymerization of L-DOPA for highly sensitive phenol and atrazine sensing. Talanta, 160, 125–132.

    Article  CAS  Google Scholar 

  31. Abdullah, J., Ahmad, M., Karuppiah, N., Heng, L. Y., & Sidek, H. (2006). Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sensors and Actuators, B: Chemical, 114(2), 604–609.

    Article  CAS  Google Scholar 

  32. Hashim, H. S., Fen, Y. W., Sheh Omar, N. A., Abdullah, J., Daniyal, W. M. E. M. M., & Saleviter, S. (2020). Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. Optics Express, 28(7), 9738.

    Article  Google Scholar 

  33. Wen, Y., Li, R., Liu, J., Zhang, X., Wang, P., Zhang, X., & Sun, B. (2020). Promotion effect of Zn on 2D bimetallic NiZn metal organic framework nanosheets for tyrosinase immobilization and ultrasensitive detection of phenol. Analytica Chimica Acta, 1127, 131–139.

    Article  CAS  Google Scholar 

  34. Zhang, S., Zhao, H., & John, R. (2001). A dual-phase biosensing system for the determination of phenols in both aqueous and organic media. Analytica Chimica Acta, 441(1), 95–105.

    Article  CAS  Google Scholar 

  35. Zhu, L., Gong, L., Zhang, Y., Wang, R., Ge, J., Liu, Z., & Zare, R. N. (2013). Rapid detection of phenol using a membrane containing laccase nanoflowers. Chemistry - An Asian Journal, 8(10), 2358–2360.

    Article  CAS  Google Scholar 

  36. Casero, E., Petit-Domínguez, M. D., Vázquez, L., Ramírez-Asperilla, I., Parra-Alfambra, A. M., Pariente, F., & Lorenzo, E. (2013). Laccase biosensors based on different enzyme immobilization strategies for phenolic compounds determination. Talanta, 115, 401–408.

    Article  CAS  Google Scholar 

  37. Roy, J. J., Abraham, T. E., Abhijith, K. S., Kumar, P. V. S., & Thakur, M. S. (2005). Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosensors and Bioelectronics, 21(1), 206–211.

    Article  CAS  Google Scholar 

  38. Othman, A. M., & Wollenberger, U. (2020). Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection. International Journal of Biological Macromolecules, 153, 855–864.

    Article  CAS  Google Scholar 

  39. Jarosz-Wilkołazka, A., Ruzgas, T., & Gorton, L. (2005). Amperometric detection of mono- and diphenols at Cerrena unicolor laccase-modified graphite electrode: Correlation between sensitivity and substrate structure. Talanta, 66(5), 1219–1224.

    Article  Google Scholar 

  40. Cho, S. H., Shim, J., Yun, S. H., & Moon, S. H. (2008). Enzyme-catalyzed conversion of phenol by using immobilized horseradish peroxidase (HRP) in a membraneless electrochemical reactor. Applied Catalysis A: General, 337(1), 66–72.

    Article  CAS  Google Scholar 

  41. Rosatto, S. S., Sotomayor, P. T., Kubota, L. T., & Gushikem, Y. (2002). SiO2/Nb2O5 sol-gel as a support for HRP immobilization in biosensor preparation for phenol detection. Electrochimica Acta, 47(28), 4451–4458.

    Article  CAS  Google Scholar 

  42. Lin, Z., Xiao, Y., Yin, Y., Hu, W., Liu, W., & Yang, H. (2014). Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Applied Materials and Interfaces, 6(13), 10775–10782.

    Article  CAS  Google Scholar 

  43. Ozoner, S. K., Keskinler, B., & Erhan, E. (2011). HRP immobilized microporous Poly(styrene-divinylbenzene-polyglutaraldehyde) monolith for forced flow injected phenol biosensing. Materials Science and Engineering C, 31(3), 663–668.

    Article  CAS  Google Scholar 

  44. Rahemi, V., Trashin, S., Hafideddine, Z., Meynen, V., Van Doorslaer, S., & De Wael, K. (2019). Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2. Sensors and Actuators, B: Chemical, 283(December 2018), 343–348.

    Article  CAS  Google Scholar 

  45. Çevik, E., Şenel, M., Baykal, A., & Abasiyanik, M. F. (2012). A novel amperometric phenol biosensor based on immobilized HRP on poly(glycidylmethacrylate)-grafted iron oxide nanoparticles for the determination of phenol derivatives. Sensors and Actuators, B: Chemical, 173, 396–405.

    Article  Google Scholar 

  46. Yang, S., Chen, Z., Jin, X., & Lin, X. (2006). HRP biosensor based on sugar-lectin biospecific interactions for the determination of phenolic compounds. Electrochimica Acta, 52(1), 200–205.

    Article  CAS  Google Scholar 

  47. Nadar, S. S., Gawas, S. D., & Rathod, V. K. (2016). Self-assembled organic–inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability. International Journal of Biological Macromolecules, 92, 660–669.

    Article  CAS  Google Scholar 

  48. Altinkaynak, C., Gulmez, C., Atakisi, O., & Özdemir, N. (2020). Evaluation of organic-inorganic hybrid nanoflower’s enzymatic activity in the presence of different metal ions and organic solvents. International Journal of Biological Macromolecules, 164, 162–171.

    Article  CAS  Google Scholar 

  49. Talens-Perales, D., Fabra, M. J., Martínez-Argente, L., Marín-Navarro, J., & Polaina, J. (2020). Recyclable thermophilic hybrid protein-inorganic nanoflowers for the hydrolysis of milk lactose. International Journal of Biological Macromolecules, 151, 602–608.

    Article  CAS  Google Scholar 

  50. Ghosh, K., Balog, E. R. M., Sista, P., Williams, D. J., Kelly, D., Martinez, J. S., & Rocha, R. C. (2014). Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides. APL Materials, 2(021101), 1–6

  51. Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 6(1), 24–27.

    Article  CAS  Google Scholar 

  52. Malmstadt, H., & Hadjiioannou, T. (1963). Specific enzymatic determination of some alpha-amino acids by an automatic spectrophotometric reaction rate method. Analytical Chemistry, 35(1), 4–16.

    Article  Google Scholar 

  53. Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., & Niu, Z. (2014). Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: Synthesis and application as a colorimetric sensor. Nanoscale, 6(1), 255–262.

    Article  CAS  Google Scholar 

  54. Memon, A. H., Ding, R., Yuan, Q., Wei, Y., & Liang, H. (2019). Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chemistry, 289, 568–574.

    Article  CAS  Google Scholar 

  55. Somturk, B., Yilmaz, I., Altinkaynak, C., Karatepe, A., Özdemir, N., & Ocsoy, I. (2016). Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme and Microbial Technology, 86, 134–142.

    Article  CAS  Google Scholar 

  56. Aydemir, D., Gecili, F., Özdemir, N., & Nuray Ulusu, N. (2020). Synthesis and characterization of a triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) as a combination of three pancreatic digestive enzymes amylase, protease and lipase. Journal of Bioscience and Bioengineering, 129(6), 679–686.

    Article  CAS  Google Scholar 

  57. Jiang, W., Wang, X., Yang, J., Han, H., Li, Q., & Tang, J. (2018). Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. Journal of Colloid and Interface Science, 514, 102–107.

    Article  CAS  Google Scholar 

  58. Li, Y., Fei, X., Liang, L., Tian, J., Xu, L., Wang, X., & Wang, Y. (2016). The influence of synthesis conditions on enzymatic activity of enzyme-inorganic hybrid nanoflowers. Journal of Molecular Catalysis B: Enzymatic, 133, 92–97.

    Article  CAS  Google Scholar 

  59. Yu, J., Wang, C., Wang, A., Li, N., Chen, X., Pei, X., … Wu, S. G. (2018). Dual-cycle immobilization to reuse both enzyme and support by reblossoming enzyme-inorganic hybrid nanoflowers. RSC Advances, 8(29), 16088–16094.

  60. Ke, C., Fan, Y., Chen, Y., Xu, L., & Yan, Y. (2016). A new lipase-inorganic hybrid nanoflower with enhanced enzyme activity. RSC Advances, 6(23), 19413–19416.

    Article  CAS  Google Scholar 

  61. Chung, M., Nguyen, T. L., Tran, T. Q. N., Yoon, H. H., Kim, I. T., & Kim, M. I. (2018). Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell. Applied Surface Science, 429, 203–209.

    Article  CAS  Google Scholar 

  62. Batule, B. S., Park, K. S., Kim, M. I., & Park, H. G. (2015). Ultrafast sonochemical synthesis of protein-inorganic nanoflowers. International Journal of Nanomedicine, 10, 137–142.

    CAS  Google Scholar 

  63. Gulmez, C., Altinkaynak, C., Özdemir, N., & Atakisi, O. (2018). Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive. International Journal of Biological Macromolecules, 119, 803–810.

    Article  CAS  Google Scholar 

  64. Koca, F. D., Demirezen Yilmaz, D., Ertas Onmaz, N., & Ocsoy, I. (2020). Peroxidase-like activity and antimicrobial properties of curcumin-inorganic hybrid nanostructure. Saudi Journal of Biological Sciences, 27(10), 2574–2579.

    Article  CAS  Google Scholar 

  65. Ren, W., Li, Y., Wang, J., Li, L., Xu, L., Wu, Y., … Tian, J. (2019). Synthesis of magnetic nanoflower immobilized lipase and its continuous catalytic application. New Journal of Chemistry, 43(28), 11082–11090.

  66. Ariza-Avidad, M., Salinas-Castillo, A., & Capitán-Vallvey, L. F. (2016). A 3D μPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor. Biosensors and Bioelectronics, 77, 51–55.

    Article  CAS  Google Scholar 

  67. He, G., Hu, W., & Li, C. M. (2015). Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity. Colloids and Surfaces B: Biointerfaces, 135, 613–618.

    Article  CAS  Google Scholar 

  68. Altinkaynak, C., Tavlasoglu, S., Kalin, R., Sadeghian, N., Ozdemir, H., Ocsoy, I., & Özdemir, N. (2017). A hierarchical assembly of flower-like hybrid Turkish black radish peroxidase-Cu2+ nanobiocatalyst and its effective use in dye decolorization. Chemosphere, 182, 122–128.

    Article  CAS  Google Scholar 

  69. Alessi, A., Agnello, S., Buscarino, G., & Gelardi, F. M. (2013). Raman and IR investigation of silica nanoparticles structure. Journal of Non-Crystalline Solids, 362(1), 20–24.

    Article  CAS  Google Scholar 

  70. Yu, Y., Fei, X., Tian, J., Xu, L., Wang, X., & Wang, Y. (2015). Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification. Colloids and Surfaces B: Biointerfaces, 130, 299–304.

    Article  CAS  Google Scholar 

  71. Sun, X., Niu, H., Song, J., Jiang, D., Leng, J., Zhuang, W., … Ying, H. (2020). Preparation of a copper polyphosphate kinase hybrid nanoflower and its application in ADP regeneration from AMP. ACS Omega, 5(17), 9991–9998.

  72. Cui, J., Zhao, Y., Liu, R., Zhong, C., & Jia, S. (2016). Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Scientific Reports, 6(29), 1–13.

    CAS  Google Scholar 

  73. Hao, M., Fan, G., Zhang, Y., Xin, Y., & Zhang, L. (2019). Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers. International Journal of Biological Macromolecules, 126, 539–548.

    Article  CAS  Google Scholar 

  74. Cheng, P., Tang, M., Chen, Z., Liu, W., Jiang, X., Pei, X., & Su, W. (2020). Dual-enzyme and NADPH co-embedded organic-inorganic hybrid nanoflowers prepared using biomimetic mineralization for the asymmetric synthesis of (: R)-(-)-pantolactone. Reaction Chemistry and Engineering, 5(10), 1973–1980.

    Article  CAS  Google Scholar 

  75. Chen, X., Xu, L., Wang, A., Li, H., Wang, C., Pei, X., … Wu, S. G. (2018). Efficient synthesis of the key chiral alcohol intermediate of Crizotinib using dual-enzyme@CaHPO4 hybrid nanoflowers assembled by mimetic biomineralization.Journal of Chemical Technology and Biotechnology, 94(1), 236–243.

  76. Duan, L., Li, H., & Zhang, Y. (2018). Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability. ACS Omega, 3(12), 18234–18241.

    Article  CAS  Google Scholar 

  77. Metelitza, D. I., Litvinchuk, A. V., & Savenkova, M. I. (1991). Peroxidase-catalyzed co-oxidation of halogen-substituted phenols and 4-aminoantipyrine. Journal of Molecular Catalysis, 67(3), 401–411.

    Article  Google Scholar 

  78. Zhong, L., Jiao, X., Hu, H., Shen, X., Zhao, J., Feng, Y., … Jia, S. (2021). Activated magnetic lipase-inorganic hybrid nanoflowers: A highly active and recyclable nanobiocatalyst for biodiesel production. Renewable Energy, 171, 825–832.

Download references

Acknowledgements

The authors would also like to thank LCME – UFSC for the technical support during electron microscopy analysis and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. F.P. da Costa: material preparation, data collection, analysis, and original draft. R. O. Henriques: writing, review, and editing. A. Furigo Jr: Project administration.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rosana Oliveira Henriques.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, F.P., Henriques, R.O. & Furigo Junior, A. Practical and Rapid Membrane-Based Biosensor for Phenol Using Copper/Calcium-Enzyme Hybrid Nanoflowers. Appl Biochem Biotechnol 195, 86–106 (2023). https://doi.org/10.1007/s12010-022-04101-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04101-5

Keywords

Navigation