Skip to main content
Log in

Ethanol Production from the Mixture of Waste French Fries and Municipal Wastewater via Separate Hydrolysis and Fermentation

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The potential of bioethanol generation using the mixture of waste French fries (WFF) and municipal wastewater (MWW) via separate hydrolysis and fermentation (SHF) was evaluated in this study. The effect of WFF substrate loading (SL, 10%, 16%, and 20%, w/v) on the SHF was also examined. Both glucose production and hydrolysis efficiency increased with increasing of SL from 10 to 16% and the maximum glucose yield of 0.236 g glucose/g WFF and hydrolysis efficiency of 91.9% were obtained at SL of 16%. However, the glucose production and hydrolysis efficiency decreased when the SL further increased to 20% due to the inhibition on enzyme caused by higher glucose production. The mixture hydrolysate was then used as feedstock for ethanol fermentation. The maximum ethanol production of 22.69 g/L was obtained from SL of 16%. The highest rate of glucose conversion to ethanol was 84.2%. The results demonstrated that the mixture of WFF and MWW could be used for ethanol production by the SHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Mandegari, M. A., Farzad, S., & Görgens, J. F. (2017). Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill. Bioresource Technology, 224, 314–326.

    Article  Google Scholar 

  2. Liu, G., & Bao, J. (2017). Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol. Bioresource Technology, 245, 18–26.

    Article  PubMed  CAS  Google Scholar 

  3. Krishnan, C., Sousa Lda, C., Jin, M., Chang, L., Dale, B. E., & Balan, V. (2010). Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnology and Bioengineering, 107, 441–450.

    Article  PubMed  CAS  Google Scholar 

  4. Corona, A., Parajuli, R., Ambye-Jensen, M., Hauschild, M. Z., & Birkved, M. (2018). Environmental screening of potential biomass for green biorefinery conversion. Journal of Cleaner Production, 189, 344–357.

    Article  Google Scholar 

  5. Martins, L. H. S., Rabelo, S. C., & da Costa, A. C. (2015). Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresource Technology, 191, 312–321.

    Article  PubMed  CAS  Google Scholar 

  6. Kamoldeen, A. A., Lee, C. K., Wan Abdullah, W. N., & Leh, C. P. (2017). Enhanced ethanol production from mild alkali-treated oil-palm empty fruit bunches via co-fermentation of glucose and xylose, Renew. Energy, 107, 113–123.

    CAS  Google Scholar 

  7. Chen, S., Xu, Z., Li, X., Yu, J., Cai, M., & Jin, M. (2018). Integrated bioethanol production from mixtures of corn and corn stover. Bioresource Technology, 258, 18–25.

    Article  PubMed  CAS  Google Scholar 

  8. Demichelis, F., Laghezza, M., Chiappero, M., & Fiore, S. (2020). Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass. Journal of Cleaner Production, 277, 124111.

    Article  CAS  Google Scholar 

  9. Jin, M. J., Sousa, L. D., Schwartz, C., He, Y. X., Sarks, C., Gunawan, C., Balan, V., & Dale, B. E. (2016). Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 18, 957–966.

    Article  CAS  Google Scholar 

  10. Moon, H. C., Song, I. S., Kim, J. C., Shirai, Y., Lee, D. H., & Kim, J. K. (2009). Enzymatic hydrolysis of food waste and ethanol fermentation. International Journal of Energy Research, 33, 164–172.

    Article  CAS  Google Scholar 

  11. Ebrahimi, F., Khanahmadi, M., Roodpeyma, S., & Taherzadeh, M. J. (2008). Ethanol production from bread residues. Biomass and Bioenergy, 32, 333–337.

    Article  CAS  Google Scholar 

  12. Condon, N., Klemick, H., & Wolverton, A. (2015). Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence. Food Policy, 51, 63–73.

    Article  Google Scholar 

  13. Han, W., Liu, Y. X., Xu, X. B., He, H., Chen, L., Tian, X. Q., Hou, P. Z., & Tang, J. H. (2020). A novel combination of enzymatic hydrolysis and microbial fuel cell for electricity production from bakery waste. Bioresource Technology, 297, 122387.

    Article  PubMed  CAS  Google Scholar 

  14. Bryant, D. N., Firth, E., Kaderbhai, N., Taylor, S., Morris, S. M., Logan, D., Garcia, N., Ellis, A., Martin, S. M., & Gallagher, J. A. (2013). Monitoring real-time enzymatic hydrolysis of distillers dried grains with solubles (DDGS) by dielectric spectroscopy following hydrothermal pre-treatment by steam explosion. Bioresource Technology, 128, 765–768.

    Article  PubMed  CAS  Google Scholar 

  15. Baral, N. R., & Shah, A. (2017). Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresource Technology, 232, 331–343.

    Article  PubMed  CAS  Google Scholar 

  16. Vasquez, M.C. Martínez, A. Castillo, E.F. Silva, E.E.  (2019) Holistic approach for sustainability enhancing of hydrotreated aviation biofuels, through life cycle assessment: a Brazilian case study. Journal of Cleaners Production 237.

  17. Ohgren, K., Bura, R., Lesnicki, G., Saddler, J., & Zacchi, G. (2007). A comparison between simultaneous saccharifification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 42, 834–839.

    Article  Google Scholar 

  18. Uckun Kiran, E., & Liu, Y. (2015). Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel, 159, 463–469.

    Article  CAS  Google Scholar 

  19. Sluiter, A., Hames, B., Ruiz, R. O., Scarlata, C., Sluiter, J., & Templeton, D. (2004). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, 1617, 1–16.

    Google Scholar 

  20. Han, W., Fang, J., Liu, Z. X., & Tang, J. H. (2016). Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresource Technology, 202, 107–112.

    Article  PubMed  CAS  Google Scholar 

  21. Leung, C. C. J., Cheung, A. S. Y., Zhang, A. Y. Z., Lam, K. F., & Lin, C. S. K. (2012). Utilisation of waste bread for fermentative succinic acid production. Biochemical Engineering Journal, 65, 10–15.

    Article  CAS  Google Scholar 

  22. Han, W., Hu, Y. Y., Li, S. Y., Huang, J. G., Nie, Q. L., Zhao, H. T., & Tang, J. H. (2017). Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. Journal of Cleaner Production, 141, 608–611.

    Article  CAS  Google Scholar 

  23. Kim, J. H., Lee, J. C., & Pak, D. (2011). Feasibility of producing ethanol from food waste. Waste Management, 31, 2121–2125.

    Article  PubMed  CAS  Google Scholar 

  24. Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501.

    Article  CAS  Google Scholar 

  25. Yu, J. M., Xu, Z. X., Liu, L., Chen, S. T., Wang, S. W., & Jin, M. J. (2019). Process integration for ethanol production from corn and corn stover as mixed substrates. Bioresource Technology, 279, 10–16.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, J., Gao, Q., Zhang, H., & Bao, J. (2016). Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock. Bioresource Technology, 218, 892–901.

    Article  PubMed  CAS  Google Scholar 

  27. Xu, Y., & Wang, D. (2017). Integrating starchy substrate into cellulosic ethanol production to boost ethanol titers and yields. Applied Energy, 195, 196–203.

    Article  CAS  Google Scholar 

  28. Mikulski, D., & Klosowski, G. (2018). Efficiency of dilute sulfuric acid pretreatment of distillery stillage in the production of cellulosic ethanol. Bioresource Technology, 268, 424–433.

    Article  PubMed  CAS  Google Scholar 

  29. Xu, Y., Zhang, M., Roozeboom, K., & Wang, D. (2018). Integrated bioethanol production to boost low-concentrated cellulosic ethanol without sacrificing ethanol yield. Bioresource Technology, 250, 299–305.

    Article  PubMed  CAS  Google Scholar 

  30. Erdei, B., Galbe, M., & Zacchi, G. (2013). Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass and Bioenergy, 56, 506–514.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program-International Cooperation Project (2019YFE0124600); Zhejiang Education Department and Research Foundation from Hangzhou Dianzi University (2021R407075).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by X Chen, X Zheng, and Y Pei. The first draft of the manuscript was written by X Chen and W Han. J Huang, J Tang, P Hou, and W Han commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junhong Tang or Wei Han.

Ethics declarations

Ethics Approval

This is an observational study. The XYZ Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zheng, X., Pei, Y. et al. Ethanol Production from the Mixture of Waste French Fries and Municipal Wastewater via Separate Hydrolysis and Fermentation. Appl Biochem Biotechnol 194, 6007–6020 (2022). https://doi.org/10.1007/s12010-022-04084-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04084-3

Keywords

Navigation