Skip to main content
Log in

Insight into the Crystal Structures and Potential of Two Newly Synthesized Naproxen-Based Hydrazide Derivatives as Potent COX-2 Inhibitors

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Although nonsteroidal anti-inflammatory drugs (NSAIDs) are medicines that are widely used to relieve pain, reduce inflammation, and bring down high temperature, literature confirmed that they still have harmful side effects. Most of their side effects are in the digestive system due to the carboxylic group. As naproxen is one of the NSAIDs, in this work, we try to mask the carboxylic group in naproxen with a relatively safe functional group. So, herein, we report the synthesis of new naproxen-based hydrazones derivatives, namely, (E)-N'-1-(4-chlorophenyl)ethylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide (4a) and (E)-N'-(4-hydroxybenzylidene)-2-(6-methoxynaphthalen-2-yl)propane hydrazide ethanol solvate (4b). The compounds were confirmed by X-ray diffraction studies. Hirshfeld surface analyses and energy frameworks of 4a and 4b have been carried out and blind molecular docking studies of them to the COX-2 enzyme were undertaken to obtain binding affinities for judging whether the compounds could act as anti-inflammatory agents. The compounds interact with the key residues: Arg120, Val349, Leu352, Tyr355, Val523, Ala527, Ser530, and Leu531 of the active enzyme pocket. Molecular dynamics studies predicted that the complexes of 4a and 4b with COX-2 are structurally stable and no major conformational changes were observed. Confirmation of the docking and simulation data was achieved by a binding free energies analysis that indicated the dominance of van der Waals energy. The compounds are drug-like molecules as they obey all prominent drug-like rules and have acceptable pharmacokinetic profiles. To investigate the relationship between their intrinsic electronic properties and their possible similarities to actual drugs, the gas-phase DFT optimizations and NBO analyses were also performed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data and materials that were used in the article are available.

References

  1. Camacho-Muñoz, D., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Effectiveness of conventional and low-cost wastewater treatments in the removal of pharmaceutically active compounds. Water, Air, & Soil Pollution, 223(5), 2611–2621.

    Article  Google Scholar 

  2. Zorita, S., Mårtensson, L., & Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the total environment, 407(8), 2760–2770.

    Article  PubMed  CAS  Google Scholar 

  3. Abbas, A. H., Elias, A. N., & Fadhil, A. A. (2015). Synthesis, characterization and biological evaluation of new potentially active hydrazones of naproxen hydrazide. Der Pharma Chemica, 7(10), 93–101.

    CAS  Google Scholar 

  4. Sharma, S., Srivastava, V. K., & Kumar, A. (2002). Newer N-substituted anthranilic acid derivatives as potent anti-inflammatory agents. European journal of medicinal chemistry, 37(8), 689–697.

    Article  PubMed  CAS  Google Scholar 

  5. Guinan, M., Benckendorff, C., Smith, M., & Miller, G. J. (2020). Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules, 25(9), 2050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Vane, J. R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature new biology, 231(25), 232–235.

    Article  PubMed  CAS  Google Scholar 

  7. Han, M. İ., Bekçi, H., Uba, A. I., Yıldırım, Y., Karasulu, E., Cumaoğlu, A., … Küçükgüzel, Ş. G. (2019). Synthesis, molecular modeling, in vivo study, and anticancer activity of 1, 2, 4‐triazole containing hydrazide–hydrazones derived from (S)‐naproxen. Archiv der Pharmazie, 352(6), 1800365.

  8. Han, M. İ, & Küçükgüzel, ŞG. (2020). Anticancer and antimicrobial activities of naproxen and naproxen derivatives. Mini reviews in medicinal chemistry, 20(13), 1300–1310.

    Article  PubMed  CAS  Google Scholar 

  9. Han, M. İ, Atalay, P., Tunç, C. Ü., Ünal, G., Dayan, S., Aydın, Ö., & Küçükgüzel, ŞG. (2021). Design and synthesis of novel (S)-Naproxen hydrazide-hydrazones as potent VEGFR-2 inhibitors and their evaluation in vitro/in vivo breast cancer models. Bioorganic & Medicinal Chemistry, 37, 116097.

    Article  CAS  Google Scholar 

  10. Han, M. I., Bekci, H., Cumaoğlu, A., & Küçükgüzel, ŞG. (2018). Synthesis and characterization of 1, 2, 4- triazole containing hydrazide-hydrazones derived from (S)-Naproxen as anticancer agents. Marmara Pharmaceutical Journal, 22(4), 559–569.

    CAS  Google Scholar 

  11. Türköz Acar, E., Helvacioğlu, S., Charehsaz, M., & Aydin, A. (2018). Determination and safety evaluation of furfural and hydroxymethylfurfural in some honey samples by using a validated HPLC-DAD method. Marmara Pharmaceutical Journal, 22(4), 519–527.

  12. Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Molecular Modeling of Proteins, 443, 365–382.

    CAS  Google Scholar 

  13. Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics, 16(31), 16719–16729.

    Article  CAS  Google Scholar 

  14. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  15. Nunes, A. M. V., de Andrade, F. das C. P., Filgueiras, L. A., de Carvalho Maia, O. A., Cunha, R. L. O. R., Rodezno, S. V. A., … Mendes, A. N. (2020). preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environmental Toxicology and Pharmacology, 80, 103470.

  16. Sheldrick, G. M. (2015). SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations of Crystallography, 71(1), 3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  17. Spackman, M. A., & Byrom, P. G. (1997). A novel definition of a molecule in a crystal. Chemical physics letters, 267(3–4), 215–220.

    Article  CAS  Google Scholar 

  18. McKinnon, J. J., Spackman, M. A., & Mitchell, A. S. (2004). Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica Section B: Structural Science, 60(6), 627–668.

    Article  PubMed  Google Scholar 

  19. Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32.

    Article  CAS  Google Scholar 

  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia Australia.

  21. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. (2017). CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 4(5), 575–587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Beck, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98(7), 5646–5648.

    Google Scholar 

  23. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.

    Article  CAS  Google Scholar 

  24. Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of physical chemistry, 98(45), 11623–11627.

    Article  CAS  Google Scholar 

  25. McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. The Journal of Chemical Physics, 72(10), 5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  26. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H. (2016). Gaussian 16.

  27. Duggan, K. C., Walters, M. J., Musee, J., Harp, J. M., Kiefer, J. R., Oates, J. A., & Marnett, L. J. (2010). Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. Journal of Biological Chemistry, 285(45), 34950–34959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sussman, J. L., Lin, D., Jiang, J., Manning, N. O., Prilusky, J., Ritter, O., & Abola, E. E. (1998). Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules. Acta Crystallographica Section D: Biological Crystallography, 54(6), 1078–1084.

    Article  PubMed  CAS  Google Scholar 

  29. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  30. Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of chemical theory and computation, 11(8), 3696–3713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cousins, K. R. (2011). Computer review of ChemDraw ultra 12.0. ACS Publications.

  32. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455–461.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein-ligand docking using GOLD. Proteins Structure, Function, and Bioinformatics, 52(4), 609–623.

    Article  CAS  Google Scholar 

  34. Case, D. A., Walker, R. C., Cheatham, T. E., Simmerling, C., Roitberg, A., Merz, K. M., … Darden, T. (2018). Amber 2018. University of California, San Francisco., 2018, 1–923.

  35. Abro, A., & Azam, S. S. (2016). Binding free energy based analysis of arsenic (+ 3 oxidation state) methyltransferase with S-adenosylmethionine. Journal of Molecular Liquids, 220, 375–382. https://doi.org/10.1016/J.MOLLIQ.2016.04.109

    Article  CAS  Google Scholar 

  36. Khan, J., Ali, G., Rashid, U., Khan, R., Jan, M. S., Ullah, R., … Sewell, R. E. (2021). Mechanistic evaluation of a novel cyclohexenone derivative’s functionality against nociception and inflammation: An in-vitro, in-vivo and in-silico approach. European Journal of Pharmacology, 902, 174091.

  37. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of computational chemistry, 25(9), 1157–1174.

    Article  PubMed  CAS  Google Scholar 

  38. Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., … others. (2014). The FF14SB force field.Amber, 14, 29–31.

  39. Kräutler, V., Van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of computational chemistry, 22(5), 501–508.

    Article  Google Scholar 

  40. Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098.

    Article  CAS  Google Scholar 

  41. Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular. Dynamics Trajectory Data, 9(7).

  42. Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Miller, B. R., III., McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. Py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321.

    Article  PubMed  CAS  Google Scholar 

  44. Lee, S. K., Lee, I. H., Kim, H. J., Chang, G. S., Chung, J. E., & No, K. T. (2003). The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. EuroQSAR designing drugs and crop protectants: processes, problems and solutions, 418–420.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Youness El Bakri.

Ethics declarations

Ethical Approval

All ethical norms were maintained by the authors during the article preparation process.

Consent to Participate

All authors agree to participate in the process.

Consent for Publication

All authors agree to publish the article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, S.K., Ahmad, S., Albayati, M.R. et al. Insight into the Crystal Structures and Potential of Two Newly Synthesized Naproxen-Based Hydrazide Derivatives as Potent COX-2 Inhibitors. Appl Biochem Biotechnol 194, 5781–5807 (2022). https://doi.org/10.1007/s12010-022-04077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04077-2

Keywords

Navigation