Skip to main content

Advertisement

Log in

Evaluation of Prebiotic Properties of Galactooligosaccharides Produced by Transgalactosylation Using Partially Purified β-Galactosidase from Enterobacter aerogenes KCTC2190

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Transgalactosylation reaction is the penultimate step in the production of galactooligosaccharides (GOSs) which has prominent applications in the treatment of disorders. In the present study, partially purified β-galactosidase from Enterobacter aerogenes KCTC2190 was used for the synthesis of prebiotic GOSs. GOSs were produced using lactose as substrate. Structural elucidation of collected fractions of GOSs by liquid chromatography electrospray ionization mass spectrometry exhibited the appearance of major peaks of produced GOSs at m/z 241.20, 481.39, 365.11, 527.17, and 701.51 respectively. GOSs facilitated the growth of potential probiotic strains (Lactobacillus delbrueckii ssp. helveticus, Bifidobacterium bifidum, and Lactiplantibacillus plantarum) and liberated propionate and butyrate as principal short-chain fatty acids which established its prebiotic potency. Synbiotic combinations exhibited good antioxidant activities. Synbiotic combinations also exhibited antimicrobial activities against pathogenic microorganisms namely Staphylococcus aureus and Escherichia coli. Synbiotic combinations of GOSs and the respective probiotic microorganisms were able to decrease viable human bone cancer cells (MG-63).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Azcarate-Peril, M. A., Ritter, A. J., Savaiano, D., Monteagudo-Mera, A., Anderson, C., Magness, S. T., & Klaenhammer, T. R. (2017). Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proceedings of the National Academy of Sciences, 114(3), E367–E375.

    Article  CAS  Google Scholar 

  2. Arnold, J. W., Roach, J., Fabela, S., Moorfield, E., Ding, S., Blue, E., Dagher, S., Magness, S., Tamayo, R., Bruno-Barcena, J., & Azcarate-Peril, M. A. (2021). The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome, 9(1), 1–19.

    Google Scholar 

  3. Bhalla, T. C. (2015). β-Galactosidase from Lactobacillus brevis PLA28: Purification, characterization and synthesis of galacto-oligosaccharides. Journal of Food and Industrial Microbiology, 1(1), 1–5.

  4. Carevic, M., Bezbradica, D., Banjanac, K., Milivojevic, A., Fanuel, M., Rogniaux, H., Rupartz, D., & Velickovic, D. (2016). Structural elucidation of enzymatically synthesized galacto-oligosaccharides using ion-mobility spectrometry–tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 64(18), 3609–3615. https://doi.org/10.1021/acs.jafc.6b01293

    Article  CAS  PubMed  Google Scholar 

  5. Fehlbaum, S., Prudence, K., Kieboom, J., Heerikhuisen, M., Van den Broek, T., Schuren, F. H., & Raederstorff, D. (2018). In vitro fermentation of selected prebiotics and their effects on the composition and activity of the adult gut microbiota. International Journal of Molecular Sciences, 19(10), 3097. https://doi.org/10.3390/ijms19103097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernández, J., Moreno, F. J., Olano, A., Clemente, A., Villar, C. J., & Lombó, F. (2018). A galacto-oligosaccharides preparation derived from lactulose protects against colorectal cancer development in an animal model. Frontiers in Microbiology, 9, 2004. https://doi.org/10.3389/fmicb.2018.02004

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferreira-Lazarte, A., Gallego-Lobillo, P., Moreno, F. J., Villamiel, M., & Hernandez-Hernandez, O. (2019). In vitro digestibility of galactooligosaccharides: Effect of the structural features on their intestinal degradation. Journal of Agricultural and Food Chemistry, 67(16), 4662–4670. https://doi.org/10.1021/acs.jafc.9b00417

    Article  CAS  PubMed  Google Scholar 

  8. Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491. https://doi.org/10.1038/nrgastro.2017.75

    Article  Google Scholar 

  9. Halliwell, B. (1995). Antioxidant characterization: Methodology and mechanism. Biochemical Pharmacology, 49(10), 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  10. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term Probiotics. Nature Reviews Gastroenterology & Hepatology, 11(8), 506.

    Article  Google Scholar 

  11. Hingu, M. N., & Shah, H. S. (2013). Review: Role of Galactooligosaccharides as Prebiotic. The Microbes, 5, 15–29.

    Google Scholar 

  12. Hou, Y., Ding, X., & Hou, W. (2015). Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Molecular Medicine Reports, 11(5), 3794–3799. https://doi.org/10.3892/mmr.2014.3121

    Article  CAS  PubMed  Google Scholar 

  13. Huang, J., Zhu, S., Zhao, L., Chen, L., Du, M., Zhang, C., & Yang, S. T. (2020). A novel β-galactosidase from Klebsiella oxytoca ZJUH1705 for efficient production of galacto-oligosaccharides from lactose. Applied Microbiology and Biotechnology, 1-12.https://doi.org/10.1007/s00253-020-10679-9

  14. Huynh, T. G., Chi, C. C., Nguyen, T. P., Tran, T. T. T. H., Cheng, A. C., & Liu, C. H. (2018). Effects of synbiotic containing Lactobacillus plantarum 7–40 and galactooligosaccharide on the growth performance of white shrimp, Litopenaeus vannamei. Aquaculture Research, 49(7), 2416–2428. https://doi.org/10.1111/are.13701

    Article  CAS  Google Scholar 

  15. Iqbal, S., Nguyen, T., Thanh, T., Maischberger, T., & Haltrich, D. (2010). b-Galactosidase from Lactobacillus plantarum WCFS1: Biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydrate Research, 345, 1408–1416. https://doi.org/10.1016/j.carres.2010.03.028

    Article  CAS  PubMed  Google Scholar 

  16. Kondepudi, K. K., Ambalam, P., Nilsson, I., & Wadstr, T. (2012). Prebiotic-non-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe, 18(5), 489–497. https://doi.org/10.1016/j.anaerobe.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  17. Lasrado, L. D., & Gudipati, M. (2015). Antioxidant property of synbiotic combination of Lactobacillus sp. and wheat bran xylo-oligosaccharides. Journal of Food Science and Technology., 52(7), 4551–4557. https://doi.org/10.1007/s13197-014-1481-9

    Article  CAS  PubMed  Google Scholar 

  18. LeBlanc, J. G., Chain, F., Martín, R., Bermúdez-Humarán, L. G., Courau, S., & Langella, P. (2017). Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, 16(1), 1–10. https://doi.org/10.1186/s12934-017-0691-z

    Article  CAS  Google Scholar 

  19. Li, E., Yang, S., Zou, Y., Cheng, W., Li, B., Hu, T., & Pang, D. (2019). Purification, characterization, prebiotic preparations and antioxidant activity of oligosaccharides from mulberries. Molecules, 24(12), 2329. https://doi.org/10.3390/molecules24122329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., & Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10), 1374. https://doi.org/10.3390/molecules21101374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, X., Jia, J., Jing, X., & Li, G. (2018). Antioxidant activities of extracts from sarcocarp of Cotoneaster multiflorus. Journal of Chemistry, 2018.https://doi.org/10.1155/2018/4619768

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randal, R. L. (1951). Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  23. Mahadevaiah, S., Basavaiah, R., Parida, M., & Batra, H. V. (2020). Optimal production of b-galactosidase from Lactobacillus fermentum for the synthesis of prebiotic galactooligosaccharides (GOS). Journal of Pure and Applied Microbiology, 14(4), 2769–2780. https://doi.org/10.22207/JPAM.14.4.53

    Article  CAS  Google Scholar 

  24. Maity, M., Bhattacharyya, A., & Bhowal, J. (2021). Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Applied Biochemistry and Biotechnology, 1-27.https://doi.org/10.1007/s12010-021-03534-8

  25. Martins, G. N., Ureta, M. M., Tymczyszyn, E. E., Castilho, P., & Gomez-Zavaglia, A. (2019). Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Frontiers in Nutrition, 6, 78. https://doi.org/10.3389/fnut.2019.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McLoughlin, R. F., Berthon, B. S., Jensen, M. E., Baines, K. J., & Wood, L. G. (2017). Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis. The American Journal of Clinical Nutrition, 106(3), 930–945.

    Article  CAS  PubMed  Google Scholar 

  27. Nemudzivhadi, V., & Masoko, P. (2014). In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2014/625961

    Article  PubMed  PubMed Central  Google Scholar 

  28. Neri, D. F., Balcão, V. M., Cardoso, S. M., Silva, A. M., Maria do Rosário, M. D., Torres, D. P., Rodrigues, L. R. M., Carvalho, L. B., Jr., & Teixeira, J. A. (2011). Characterization of galactooligosaccharides produced by β-galactosidase immobilized onto magnetized Dacron. International Dairy Journal, 21(3), 172–178. https://doi.org/10.1016/j.idairyj.2010.10.009

    Article  CAS  Google Scholar 

  29. Oh, N. S., Kim, K., Oh, S., & Kim, Y. (2019). Enhanced production of galactooligosaccharides enriched skim milk and applied to potentially synbiotic fermented milk with Lactobacillus rhamnosus 4B15. Food Science of Animal Resources, 39(5), 725. https://doi.org/10.5851/kosfa.2019.e55

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oh, S. Y., Youn, S. Y., Park, M. S., Kim, H. G., Baek, N. I., Li, Z., & Ji, G. E. (2017). Synthesis of β-galactooligosaccharide using bifidobacterial β-galactosidase purified from recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 27(8), 1392–1400. https://doi.org/10.4014/jmb.1702.02058

    Article  CAS  PubMed  Google Scholar 

  31. Pan, X. D., Chen, F. Q., Wu, T. X., Tang, H. G., & Zhao, Z. Y. (2009). Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. Journal of Zhejiang University Science B, 10(4), 258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qamar, T. R., Syed, F., Nasir, M., Rehman, H., Zahid, M. N., Liu, R. H., & Iqbal, S. (2016). Novel combination of prebiotics galacto-oligosaccharides and inulin-inhibited aberrant crypt foci formation and biomarkers of colon cancer in wistar rats. Nutrients, 8(8), 465.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qi, T., Gu, G., Xu, L., Xiao, M., & Lu, L. (2017). Efficient synthesis of tyrosol galactosides by the β-galactosidase from Enterobacter cloacae B5. Applied Microbiology and Biotechnology, 101(12), 4995–5003. https://doi.org/10.1007/s00253-017-8249-x

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Colinas, B., Kolida, S., Baran, M., Ballesteros, A. O., Rastall, R. A., & Plou, F. J. (2013). Analysis of fermentation selectivity of purified galacto-oligosaccharides by in vitro human faecal fermentation. Applied Microbiology and Biotechnology, 97(13), 5743–5752. https://doi.org/10.1007/s00253-013-489

    Article  CAS  PubMed  Google Scholar 

  35. Sako, T., Matsumoto, K., & Tanaka, R. (1999). Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal, 9(1), 69–80.

    Article  CAS  Google Scholar 

  36. Sangwan, V., Tomar, S. K., Ali, B., Singh, R. R., Singh, A. K., & Mandal, S. (2014). Galactooligosaccharides purification using microbial fermentation and assessment of its prebiotic potential by in vitro method. International Journal of Current Microbiology and Applied Sciences, 3(4), 573–585.

    Google Scholar 

  37. Urrutia, P., Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A. O., Wilson, L., Illanes, A., & Plou, F. J. (2013). Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Journal of Agricultural and Food Chemistry, 61(5), 1081–1087. https://doi.org/10.1021/jf304354u

    Article  CAS  PubMed  Google Scholar 

  38. Vera, C., Guerrero, C., Conejeros, R., & Illanes, A. (2012). Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50(3), 188–194. https://doi.org/10.1016/j.enzmictec.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  39. Wichienchot, S., Hemmaratchirakul, J., Jaturapiree, P., & Pruksasri, S. (2016). Evaluating prebiotic property of galactooligosaccharide produced by Lactobacillus pentosus var. plantarum BFP32 in fecal batch culture. International Food Research Journal, 23(5), 2241–2248.

  40. Yin, H., Dijkhuizen, L., & van Leeuwen, S. S. (2018). Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 465, 58–65. https://doi.org/10.1016/j.carres.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  41. Yu, L., & O’Sullivan, D. J. (2014). Production of galactooligosaccharides using a hyperthermophilic β-galactosidase in permeabilized whole cells of Lactococcus lactis. Journal of Dairy Science, 97(2), 694–703. https://doi.org/10.3168/jds.2013-7492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Council of Medical Research, New Delhi, India, for providing Senior Research Fellowship. Authors are also thankful for the facilities provided by School of Community Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India, to complete the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayati Bhowal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, M., Majumdar, S., Bhattacharyya, D.K. et al. Evaluation of Prebiotic Properties of Galactooligosaccharides Produced by Transgalactosylation Using Partially Purified β-Galactosidase from Enterobacter aerogenes KCTC2190. Appl Biochem Biotechnol 195, 2294–2316 (2023). https://doi.org/10.1007/s12010-022-04073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04073-6

Keywords

Navigation