Skip to main content

Advertisement

Log in

Resource Recycling, Recovery, and Xenobiotic Remediation from E-wastes Through Biofilm Technology: A Review

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Around 50 million tonnes of electronic waste has been generated globally per year, causing an environmental hazard and negative effects on human health, such as infertility and thyroid disorders in adults, endocrine and neurological damage in both animals and humans, and impaired mental and physical development in children. Out of that, only 15% is recycled each year and the remaining is disposed of in a landfill, illegally traded or burned, and treated in a sub-standard way. The processes of recycling are challenged by the presence of brominated flame retardants. The different recycling technologies such as the chemical and mechanical methods have been well studied, while the most promising approach is the biological method. The process of utilizing microbes to decontaminate and degrade a wide range of pollutants into harmless products is known as bioremediation and it is an eco-friendly, cost-effective, and sustainable method. The bioremediation process is significantly aided by biofilm communities attached to electronic waste because they promote substrate bioavailability, metabolite transfer, and cell viability, all of which accelerate bioleaching and biodegradation. Microbes existing in biofilm mode relatable to free-floating planktonic cells are advantageous of bioremediation due to their tolerant ability to environmental stress and pollutants through diverse catabolic pathways. This article discusses the harmful effects of electronic waste and its management using biological strategies especially biofilm-forming communities for resource recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This submitted article contains all of the data generated or analysed during this investigation.

References

  1. Awasthi, A., Hasan, M., Mishra, Y., Pandey, A., Tiwary, B., Kuhad, R., et al. (2019). Environmentally sound system for E-waste: Biotechnological perspectives. Current Research in Biotechnology, 1, 58–64.

    Article  Google Scholar 

  2. Kumar, A., Holuszko, M., & Espinosa, D. (2017). E-waste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling, 122, 32–42.

    Article  Google Scholar 

  3. Abalansa, S., El Mahrad, B., Icely, J., & Newton, A. (2021). Electronic waste, an environmental problem exported to developing countries: The GOOD, the BAD and the UGLY. Sustainability, 13(9), 5302.

    Article  Google Scholar 

  4. Agarwal, A., Bajaj, S., Jha, R.K., & Bhageshwar, P.N. (2021). Dealing with the discarded: E-waste management in India. Available from: https://www.downtoearth.org.in/blog/pollution/dealing-with-the-discarded-e-waste-management-in-india-78667. Accessed December 10, 2021.

  5. E-Waste in India. (2011). RESEARCH UNIT (LARRDIS) RAJYA SABHA SECRETARIAT NEW DELHI. Available from: https://rajyasabha.nic.in/rsnew/publication_electronic/E-Waste_in_india.pdf. Accessed December 10, 2021.

  6. Liu, R., Ma, S., Yu, Y., Li, G., Yu, Y., & An, T. (2020). Field study of PAHs with their derivatives emitted from e-waste dismantling processes and their comprehensive human exposure implications. Environment International, 144, 106059.

    Article  CAS  PubMed  Google Scholar 

  7. Li, J., Liang, C., & Ma, C. (2014). Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. Journal Of Material Cycles And Waste Management, 17(3), 529–539.

    Article  Google Scholar 

  8. Pourhossein, F., & Mousavi, S. (2018). Enhancement of copper, nickel, and gallium recovery from LED waste by adaptation of Acidithiobacillus ferrooxidans. Waste Management, 79, 98–108.

    Article  CAS  PubMed  Google Scholar 

  9. Guo, J., Guo, J., & Xu, Z. (2009). Recycling of non-metallic fractions from waste printed circuit boards: A review. Journal Of Hazardous Materials, 168(2–3), 567–590.

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, Z., Yuan, Y., Liu, W., Ruan, J., Li, Y., Fan, Y., & Qiu, R. (2019). Heat evolution and energy analysis of cyanide bioproduction by a cyanogenic microorganism with the potential for bioleaching of precious metals. Journal Of Hazardous Materials, 377, 284–289.

    Article  CAS  PubMed  Google Scholar 

  11. Duan, H., Hu, J., Tan, Q., Liu, L., Wang, Y., & Li, J. (2015). Systematic characterization of generation and management of e-waste in China. Environmental Science and Pollution Research, 23(2), 1929–1943.

    Article  PubMed  Google Scholar 

  12. Awasthi, A., Zeng, X., & Li, J. (2016). Environmental pollution of electronic waste recycling in India: A critical review. Environmental Pollution, 211, 259–270.

    Article  CAS  PubMed  Google Scholar 

  13. Zhuang, W., Fitts, J., Ajo-Franklin, C., Maes, S., Alvarez-Cohen, L., & Hennebel, T. (2015). Recovery of critical metals using biometallurgy. Current Opinion In Biotechnology, 33, 327–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song, Q., & Li, J. (2014). Environmental effects of heavy metals derived from the e-waste recycling activities in China: A systematic review. Waste Management, 34(12), 2587–2594.

    Article  CAS  PubMed  Google Scholar 

  15. Baniasadi, M., Vakilchap, F., Bahaloo-Horeh, N., Mousavi, S., & Farnaud, S. (2019). Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. Journal Of Industrial And Engineering Chemistry, 76, 75–90.

    Article  CAS  Google Scholar 

  16. Arshadi, M., Mousavi, S., & Rasoulnia, P. (2016). Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium : RSM based optimization of effective factors and evaluation of their interactions. Waste Management, 57, 158–167.

    Article  CAS  PubMed  Google Scholar 

  17. Rozas, E., Mendes, M., Custódio, M., Espinosa, D., & do Nascimento, C. (2019). Self-assembly of supramolecular structure based on copper-lipopeptides isolated from e-waste bioleaching liquor. Journal Of Hazardous Materials, 368, 63–71.

    Article  CAS  PubMed  Google Scholar 

  18. Hong, Y., & Valix, M. (2014). Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. Journal Of Cleaner Production, 65, 465–472.

    Article  CAS  Google Scholar 

  19. Senophiyah-Mary, J., Loganath, R., & Shameer, P. (2018). Deterioration of cross-linked polymers of thermoset plastics of e-waste as a side part of bioleaching process. Journal Of Environmental Chemical Engineering, 6(2), 3185–3191.

    Article  CAS  Google Scholar 

  20. Maneesuwannarat, S., Vangnai, A., Yamashita, M., & Thiravetyan, P. (2016). Bioleaching of gallium from gallium arsenide by Cellulosimicrobium funkei and its application to semiconductor/electronic wastes. Process Safety and Environmental Protection, 99, 80–89.

    Article  CAS  Google Scholar 

  21. Brandl, H., Bosshard, R., & Wegmann, M. (2001). Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59(2–3), 319–326.

    Article  CAS  Google Scholar 

  22. Yuan, Z., Ruan, J., Li, Y., & Qiu, R. (2018). A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards. Journal Of Hazardous Materials, 353, 135–141.

    Article  CAS  PubMed  Google Scholar 

  23. Yin, H., He, B., Peng, H., Ye, J., Yang, F., & Zhang, N. (2008). Removal of Cr (VI) and Ni (II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism. Journal Of Hazardous Materials, 158(2–3), 568–576.

    Article  CAS  PubMed  Google Scholar 

  24. Zeng, X., Song, Q., Li, J., Yuan, W., Duan, H., & Liu, L. (2015). Solving e-waste problem using an integrated mobile recycling plant. Journal Of Cleaner Production, 90, 55–59.

    Article  Google Scholar 

  25. The Growing Environmental Risks of E-Waste (2021), Geneva Environment Network. Available from: https://www.genevaenvironmentnetwork.org/resources/updates/the-growing-environmental-risks-of-e-waste/, Accessed December 17, 2021.

  26. Bharadwaj, A. (2018). Bioremediation of xenobiotics: An eco-friendly cleanup approach. Green chemistry in environmental sustainability and chemical education. pp. 1–13.

  27. Mishra, S., Lin, Z., Pang, S., Zhang, W., Bhatt, P., & Chen, S. (2021). Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Frontiers in Bioengineering and Biotechnology, 9, 632059.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Embrandiri, A., Kiyasudeen, S. K., Rupani, P. F., & Ibrahim, M. H. (2016). Environmental xenobiotics and its effects on natural ecosystem. Plant responses to xenobiotics. pp. 1–18. Springer, Singapore.

  29. Patterson, A. D., Gonzalez, F. J., & Idle, J. R. (2010). Xenobiotic metabolism: A view through the metabolometer. Chemical research in toxicology, 23(5), 851–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, S., Dong, Y. H., Chang, C., Deng, Y., Zhang, X. F., Zhong, G., & Zhang, L. H. (2013). Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresource technology, 132, 16–23.

    Article  CAS  PubMed  Google Scholar 

  31. Gupta, S. K., Singh, B., Mungray, A. K., Bharti, R., Nema, A. K., Pant, K. K., & Mulla, S. I. (2022). Bioelectrochemical technologies for removal of xenobiotics from wastewater. Sustainable Energy Technologies and Assessments, 49, 101652.

    Article  Google Scholar 

  32. Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource Technology, 101(11), 3816–3824.

    Article  CAS  PubMed  Google Scholar 

  33. Gill., & Nain, G. (2016). Electronic waste. Encyclopedia Britannica. Available from: https://www.britannica.com/technology/electronic-waste. Accessed February 12, 2022.

  34. Ikhlayel, M. (2018). An integrated approach to establish e-waste management systems for developing countries. Journal Of Cleaner Production, 170, 119–130.

    Article  Google Scholar 

  35. Premalatha, M., Abbasi, T., & Abbasi, S. (2014). The generation, impact, and management of e-waste: State of the art. Critical Reviews in Environmental Science and Technology, 44(14), 1577–1678.

    Article  Google Scholar 

  36. Vats, M. C., & Singh, S. K. (2014). E-Waste characteristic and its disposal. International Journal of ecological science and environmental engineering, 1, 49–61.

    Google Scholar 

  37. Sahajwalla, V., & Gaikwad, V. (2018). The present and future of e-waste plastics recycling. Current Opinion in Green and Sustainable Chemistry, 13, 102–107.

    Article  Google Scholar 

  38. Robinson, B. (2009). E-waste: An assessment of global production and environmental impacts. Science Of the Total Environment, 408(2), 183–191.

    Article  CAS  PubMed  Google Scholar 

  39. Ankit, Saha, L., Kumar, V., Tiwari, J., Sweta, & Rawat, S. et al. (2021). Electronic waste and their leachates impact on human health and environment: Global ecological threat and management. Environmental Technology &Amp; Innovation, 24, 102049.

  40. Youcai., Z., (2018). Leachate generation and characteristics. In: (1st ed.), Pollution Control Technology for Leachate from Municipal Solid Waste. Elsevier, pp. 1–30.

  41. Omondi, E. A., Ndiba, P. K., & Njuru, P. G. (2015). Phytoremediation of polychlorobiphenyls (PCB’s) in landfill e-waste leachate with water hyacinth (E. crassipes). International Journal of Scientific & Technology Research, 4, 147–156.

    Google Scholar 

  42. Armstrong, M.D., Rowe, R.K. (1999). Effect of landfill operations on the quality of municipal solid waste leachate. In: Proc. 3rd Int. Landfill Symp. Cagliari, pp. 81–88.

  43. Castro-Jiménez, J., Eisenreich, S.J., Vives, I. (2007). Persistent organic pollutants (POPs) in the European atmosphere: An updated overview. European Commission Joint Research Centre. JRC37833. Available from: https://publications.jrc.ec.europa.eu/repository/handle/JRC37833

  44. Kiddee, P., Naidu, R., Wong, M., Hearn, L., & Muller, J. (2014). Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate. Waste Management, 34(11), 2292–2304.

    Article  CAS  PubMed  Google Scholar 

  45. Cases, I., & de Lorenzo, V. (2005). Genetically modified organisms for the environment: Stories of success and failure and what we have learned from them. International Microbiology, 8, 213–222.

    CAS  PubMed  Google Scholar 

  46. Urgun-Demirtas, M., Stark, B., & Pagilla, K. (2006). Use of genetically engineered microorganisms (GEMs) for the bioremediation of contaminants. Critical Reviews in Biotechnology, 26, 145–164.

    Article  CAS  PubMed  Google Scholar 

  47. Safa, M., Alemzadeh, I., & Vossoughi, M. (2014). Biodegradability of oily wastewater using rotating biological contactor combined with an external membrane. Journal of Environmental Health Science and Engineering, 12, 117.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arshadi, M., & Mousavi, S. (2015). Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium. Bioresource Technology, 175, 315–324.

    Article  CAS  PubMed  Google Scholar 

  49. García-García, J. D., Sánchez-Thomas, R., & Moreno-Sánchez, R. (2016). Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnology Advances, 34, 859–873.

    Article  PubMed  Google Scholar 

  50. Edmunds, W. M. (2011). Beryllium: Environmental geochemistry and health effects. Encyclopedia of Environmental Health, 293–301.

  51. Adanu, S. K., Gbedemah, S. F., & Attah, M. K. (2020). Challenges of adopting sustainable technologies in e-waste management at Agbogbloshie, Ghana. Heliyon, 6, e04548

  52. Zheng, L., Wu, K., Li, Y., Qi, Z., Han, D., Zhang, B., et al. (2008). Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environmental Research, 108, 15–20.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, W.L., Du, Y., Zhai, M.-M., & Shang, Q. (2014). Cadmium exposure and its health effects: A 19-year follow-up study of a polluted area in China. Science of the Total Environment, 470–471.

  54. Ebrahimi, M., Khalili, N., Razi, S., Keshavarz-Fathi, M., Khalili, N., & Rezaei, N. (2020). Effects of lead and cadmium on the immune system and cancer progression. Journal of Environmental Health Science and Engineering, 18, 335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuntawee, C., Tantrakarnapa, K., Limpanont, Y., Lawpoolsri, S., Phetrak, A., Mingkhwan, R., & Worakhunpiset, S. (2020). Exposure to Heavy Metals in Electronic Waste Recycling in Thailand. International Journal of Environmental Research and Public Health, 17, 2996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Danzeisen, R., Araya, M., Harrison, B., Keen, C., Solioz, M., Thiele, D., & McArdle, H. (2008). How reliable and robust are current biomarkers for copper status? – reply by Danzeisen et al. British Journal of Nutrition, 100, 1343.

    Article  CAS  Google Scholar 

  57. Shanker, A. K., & Venkateswarlu, B. (2011). Chromium: Environmental pollution, health effects and mode of action. Encyclopedia of Environmental Health, 650–659.

  58. Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow, W. L., Adams, W. J., & Menzie, C. A. (2019). Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environmental Management, 65, 131–159.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Heukelekian, H., & Heller, A. (1940). Relation between food concentration and surface for bacterial growth. Journal of bacteriology, 40(4), 547–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Flemming, H., Wingender, J., Griebe, T., & Mayer, C. (2000). Physico-chemical properties of biofilms. Biology, 19–34.

  61. Sutherland, I. (2001). Biofilm exopolysaccharides: A strong and sticky framework. Microbiology (Reading, England), 147(Pt 1), 3–9.

    Article  CAS  PubMed  Google Scholar 

  62. Annachhatre, A., & Bhamidimarri, S. (1992). Microbial attachment and growth in fixed-film reactors: Process startup considerations. Biotechnology Advances, 10(1), 69–91.

    Article  CAS  PubMed  Google Scholar 

  63. Watnick, P., & Kolter, R. (2000). Biofilm, City of Microbes. Journal Of Bacteriology, 182(10), 2675–2679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sehar, S., & Naz, I. (2016). Role of the biofilms in wastewater treatment. In D. Dhanasekaran, & N. Thajuddin (Eds.), Microbial Biofilms - Importance and Applications. Intech Open. Available from: https://www.intechopen.com/chapters/51065

  65. Liu, Y., & Tay, J. H. (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water research, 36(7), 1653–1665.

    Article  CAS  PubMed  Google Scholar 

  66. Oder, M., Fink, R., Bohinc, K., & Torkar, K. G. (2017). The influence of shear stress on the adhesion capacity of Legionella pneumophila. Arhiv Za Higijenu Rada i Toksikologiju, 68, 109–115.

    Article  CAS  PubMed  Google Scholar 

  67. Rochex, A., Godon, J., Bernet, N., & Escudie, R. (2008). Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Research, 42(20), 4915–4922.

    Article  CAS  PubMed  Google Scholar 

  68. Costerton, J., Lewandowski, Z., Caldwell, D., Korber, D., & Lappin-Scott, H. (1995). MICROBIAL BIOFILMS. Annual Review of Microbiology, 49(1), 711–745.

    Article  CAS  PubMed  Google Scholar 

  69. Fonseca, A., & Sousa, J. (2007). Effect of shear stress on growth, adhesion and biofilm formation of Pseudomonas aeruginosa with antibiotic-induced morphological changes. International Journal Of Antimicrobial Agents, 30(3), 236–241.

    Article  CAS  PubMed  Google Scholar 

  70. Horn, H., Reiff, H., & Morgenroth, E. (2003). Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnology And Bioengineering, 81(5), 607–617.

    Article  CAS  PubMed  Google Scholar 

  71. Agarwal, R. K., Singh, S., Bhilegaonkar, K. N., & Singh, V. P. (2011). Optimization of microtiter plate assay for the testing of biofilm formation ability in different Salmonella serotypes. In International Food Research Journal, 18(4), 1493–1498.

    Google Scholar 

  72. Pompilio, A., Piccolomini, R., Picciani, C., D’Antonio, D., Savini, V., & di Bonaventura, G. (2008). Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: The role of cell surface hydrophobicity and motility. FEMS Microbiology Letters, 287, 41–47.

    Article  CAS  PubMed  Google Scholar 

  73. Qurashi, A., & Sabri, A. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal Of Microbiology, 43(3), 1183–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M., & Kjelleberg, S. (2004). Quorum sensing- controlled biofilm development in Serratia liquefaciens MG1. Journal of Bacteriology, 186, 692–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoštacká, †a, Čižnár, I., & Štefkovičová, M. (2010). Temperature and pH affect the production of bacterial biofilm. In Folia Microbiol, 55, 75–78.

  76. Tilahun, A., Haddis, S., Teshale, A., & Hadush, T. (2016). Review on biofilm and microbial adhesion. International Journal of Microbiological Research, 7, 63–73.

    CAS  Google Scholar 

  77. Hu, J., Tang, Y., Ai, F., Lin, M., & Ruan, J. (2021). Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology. Journal Of Hazardous Materials, 403, 123586.

    Article  CAS  PubMed  Google Scholar 

  78. Garrett, T., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress In Natural Science, 18(9), 1049–1056.

    Article  CAS  Google Scholar 

  79. Di Bonaventura, G., Piccolomini, R., Paludi, D., D’Orio, V., Vergara, A., Conter, M., & Ianieri, A. (2008). Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. Journal Of Applied Microbiology, 104(6), 1552–1561.

    Article  PubMed  Google Scholar 

  80. El-Masry, M., El-Bestawy, E., & El-Adl, N. (2004). Bioremediation of vegetable oil and grease from polluted wastewater using a sand biofilm system. World Journal of Microbiology and Biotechnology, 20(6), 551–557.

    Article  CAS  Google Scholar 

  81. Sun, M., Wang, Y., Hong, J., Dai, J., Wang, R., Niu, Z., & Xin, B. (2016). Life cycle assessment of a bio-hydrometallurgical treatment of spent ZnMn batteries. Journal Of Cleaner Production, 129, 350–358.

    Article  CAS  Google Scholar 

  82. Kaksonen, A., Boxall, N., Gumulya, Y., Khaleque, H., Morris, C., Bohu, T., et al. (2018). Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy, 180, 7–25.

    Article  CAS  Google Scholar 

  83. Stephen, J., & Macnaughtont, S. (1999). Developments in terrestrial bacterial remediation of metals. Current Opinion in Biotechnology, 10(3), 230–233.

    Article  CAS  PubMed  Google Scholar 

  84. Erüst, C., Akcil, A., Gahan, C., Tuncuk, A., & Deveci, H. (2013). Biohydrometallurgy of secondary metal resources: A potential alternative approach for metal recovery. Journal Of Chemical Technology &Amp; Biotechnology, 88(12), 2115–2132.

  85. Das, N. (2010). Recovery of precious metals through biosorption — A review. Hydrometallurgy, 103(1–4), 180–189.

    Article  CAS  Google Scholar 

  86. Pollmann, K., Kutschke, S., Matys, S., Raff, J., Hlawacek, G., & Lederer, F. (2018). Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnology Advances, 36(4), 1048–1062.

    Article  CAS  PubMed  Google Scholar 

  87. Ahalya, N., Ramachandra, T., & Kanamadi, R. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, 71–79.

  88. Hossain, Md. S., Sulala, M.Z.F., Al-Hamadani, Toufiqur, Md., & Rahman. (2015). E-waste: A challenge for sustainable development. Journal of Health and Pollution, 5, 3–11

  89. Peana, M., Medici, S., Dadar, M., Zoroddu, M. A., Pelucelli, A., Chasapis, C. T., & Bjørklund, G. (2021). Environmental barium: Potential exposure and health-hazards. Archives of Toxicology, 95, 2605–2612.

    Article  CAS  PubMed  Google Scholar 

  90. Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–278.

  91. Juwarkar, A., & Yadav, S. K. (2010). Bioaccumulation and Biotransformation of Heavy Metals. Bioremediation Technology, 167, 264–284.

    Google Scholar 

  92. Benzerara, K., Miot, J., Morin, G., Ona- Nguema, G., Skouri-Panet, F., & Ferard, C. (2011). Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience, 343, 160–167.

  93. Patra, P., & Natarajan, K. (2006). Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa. Journal Of Colloid and Interface Science, 298(2), 720–729.

    Article  CAS  PubMed  Google Scholar 

  94. Behera, S., & Mulaba-Bafubiandi, A. (2016). Microbes assisted mineral flotation a future prospective for mineral processing industries: A review. Mineral Processing And Extractive Metallurgy Review, 38(2), 96–105.

    Article  Google Scholar 

  95. Qureshi, N., Annous, B., Ezeji, T., Karcher, P., & Maddox, I. (2005). Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microbial Cell Factories, 4(1), 24.

  96. Huang, W., Ramey, D., & Yang, S. (2004). Continuous production of butanol by <I>Clostridium acetobutylicum </I> immobilized in a fibrous bed bioreactor. Applied Biochemistry and Biotechnology, 115(1–3), 0887–0898.

    Article  Google Scholar 

  97. Tay, A., & Yang, S. (2002). Production of L (+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology And Bioengineering, 80(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  98. Qureshi, N., Schripsema, J., Lienhardt, J., & Blaschek, H. (2000). Journal search results - Cite this for me. World Journal of Microbiology and Biotechnology, 16(4), 377–382.

    Article  CAS  Google Scholar 

  99. Qureshi, N., & Maddox, I. (1988). Reactor design for the ABE fermentation using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Bioprocess Engineering, 3(2), 69–72.

    Article  CAS  Google Scholar 

  100. Zhong, J.-J. (2011). Bioreactor Engineering. Comprehensive Biotechnology, 257–269. Available from: https://www.elsevier.com/books/comprehensive-biotechnology/moo-young/978-0-444-53352-4

  101. Stoodley, P., Sauer, K., Davies, D., & Costerton, J. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56(1), 187–209.

    Article  CAS  PubMed  Google Scholar 

  102. Qureshi, N., Lai, L., & Blaschek, H. (2004). Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food And Bioproducts Processing, 82(2), 164–173.

    Article  CAS  Google Scholar 

  103. Jujun, R., Jie, Z., Jian, H., & Zhang, J. (2015). A novel designed bioreactor for recovering precious metals from waste printed circuit boards. Scientific Reports, 5(1), 13481.

  104. Hamerski, F., Krummenauer, A., Bernardes, A., & Veit, H. (2019). Improved settings of a corona-electrostatic separator for copper concentration from waste printed circuit boards. Journal Of Environmental Chemical Engineering, 7(1), 102896.

    Article  CAS  Google Scholar 

  105. Veit, H., Bernardes, A., Ferreira, J., Tenório, J., & Malfatti, C. (2006). Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. Journal Of Hazardous Materials, 137(3), 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  106. Chen, S., Yang, Y., Liu, C., Dong, F., & Liu, B. (2015). Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere, 141, 162–168.

    Article  CAS  PubMed  Google Scholar 

  107. Pant, D., Joshi, D., Upreti, M., & Kotnala, R. (2012). Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Management, 32(5), 979–990.

    Article  CAS  PubMed  Google Scholar 

  108. Abdelbasir, S., Hassan, S., Kamel, A., & El-Nasr, R. (2018). Status of electronic waste recycling techniques: A review. Environmental Science and Pollution Research, 25(17), 16533–16547.

    Article  PubMed  Google Scholar 

  109. Keith, B. (2011). Soldering, Editor(s): Keith Brindley, Starting Electronics (Fourth Edition), Newnes, 12, 205–257.

  110. Sarah, Y. (2018). Types & advantages of printed circuit boards (PCB) for electronic engineers. Available from: https://www.electronicslovers.com/2018/07/types-advantages-of-printed-circuit-Boards.html. Accessed December 10, 2021

  111. Mrážiková, A., Saternus, M., Fornalczyk, A., Willner, J., Kaduková, J., Marcinčáková, R., & Velgosová, O. (2016). The effect of specific conditions on Cu, Ni, Zn and Al recovery from PCBS waste using acidophilic bacterial strains. Archives of Metallurgy and Materials, 61, 261–264.

    Article  Google Scholar 

  112. Priya, A., & Hait, S. (2017). Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environmental Science and Pollution Research, 24(8), 6989–7008.

    Article  CAS  PubMed  Google Scholar 

  113. Colmer, A., & Hinkle, M. (1947). The role of microorganisms in acid mine drainage. Science, 106(2751), 253–256.

    Article  CAS  PubMed  Google Scholar 

  114. Pant, D., & Dhiman, V. (2020). An overview on environmental pollution caused by heavy metals released from e-waste and their bioleaching. In: Advances in environmental pollution management: Wastewater impacts and treatment technologies (P. Kumar, V., Kamboj, N., Payum, T., Singh, J. and Kumar, Eds). p. 41–53.

  115. Valix, M. (2017). Bioleaching of Electronic Waste: Milestones and Challenges. In: Current developments in biotechnology and bioengineering. Solid Waste Management. Elsevier. p. 504.

  116. Silvas, F.P.C., Espinosa, D.C.R., Tenorio, J.A.S. (2015). Bioleaching. In: Electronic waste: Recycling techniques (Veit, H.M., & Bernades, A.M, Eds). Springer International Publishing Switzerland. p. 159.

  117. Zhao, F., & Wang, S. (2019). Bioleaching of electronic waste using extreme acidophiles In: Bioleaching of electronic waste using extreme acidophiles. p. 153–174.

  118. Liu, J., Wu, W., Zhang, X., Zhu, M., & Tan, W. (2017). Adhesion properties of and factors influencing Leptospirillum ferriphilum in the bio-oxidation of refractory gold-bearing pyrite. International Journal of Mineral Processing, 160, 39–46.

    Article  CAS  Google Scholar 

  119. Jadhav, U., & Hocheng, H. (2013). Extraction of silver from spent silver oxide–zinc button cells by using Acidithiobacillus ferrooxidans culture supernatant. Journal Of Cleaner Production, 44, 39–44.

    Article  CAS  Google Scholar 

  120. Coram, N. J., & Rawlings, D. E. (2002). Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial bio-oxidation tanks that operate at 40 °C. Applied and Environment Microbiology, 68, 838–845.

    Article  CAS  Google Scholar 

  121. Yang, T., Xu, Z., Wen, J., & Yang, L. (2009). Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 97(1–2), 29–32.

    Article  CAS  Google Scholar 

  122. Wu, W., Liu, X., Zhang, X., Zhu, M., & Tan, W. (2018). Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresources And Bioprocessing, 5(1),10.

  123. Mražíková, A., Marcinčáková, R., Sedlakova-Kadukova, J., & Velgosová, O. (2014). Nickel recovery from printed circuit boards using acidophilic bacteria. Inzynieria Mineralna., 15, 51–54.

    Google Scholar 

  124. More, T., Yadav, J., Yan, S., Tyagi, R., & Surampalli, R. (2014). Extracellular polymeric substances of bacteria and their potential environmental applications. Journal Of Environmental Management, 144, 1–25.

    Article  CAS  PubMed  Google Scholar 

  125. Faraji, F., Mahandra, H., & Ghahreman, A. (2021). An investigation for biogenic cyanide distillation for gold recovery and cyanide bioremediation by Bacillus megaterium. Journal Of Environmental Chemical Engineering, 9(5), 106030.

    Article  CAS  Google Scholar 

  126. Wang, J., Faraji, F., Ramsay, J., & Ghahreman, A. (2021). A review of biocyanidation as a sustainable route for gold recovery from primary and secondary low-grade resources. Journal Of Cleaner Production, 296, 126457.

    Article  CAS  Google Scholar 

  127. Liang, C., Li, J., & Ma, C. (2014). Review on cyanogenic bacteria for gold recovery from e-wastE. Advanced Materials Research, 878, 355–367.

    Article  Google Scholar 

  128. Hong, Y., Thirion, D., Subramanian, S., Yoo, M., Choi, H., Kim, H., et al. (2020). Precious metal recovery from electronic waste by a porous porphyrin polymer. Proceedings Of The National Academy Of Sciences, 117(28), 16174–16180.

    Article  CAS  Google Scholar 

  129. Natarajan, G., & Ting, Y. (2015). Gold biorecovery from e-waste: An improved strategy through spent medium leaching with pH modification. Chemosphere, 136, 232–238.

    Article  CAS  PubMed  Google Scholar 

  130. Das, S., Natarajan, G., & Ting, Y. P. (2017). Bio-extraction of precious metals from urban solid waste. AIP Conference Proceedings, 1805, 020004.

    Article  Google Scholar 

  131. Tay, S., Natarajan, G., Rahim, M., Tan, H., Chung, M., Ting, Y., & Yew, W. (2013). Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Scientific Reports, 3(1), 2236.

  132. Vakilchap, F., Mousavi, S. M., Baniasadi, M., & Farnaud, S. (2020). Development and evolution of biocyanidation in metal recovery from solid waste: A review. Reviews in Environmental Science and Bio/Technology, 19(3), 1–22.

  133. Palmer, R. J., & Sternberg, C. (1999). Modern microscopy in biofilm research: Confocal microscopy and other approaches. Current Opinion in Biotechnology, 10, 263–268.

    Article  CAS  PubMed  Google Scholar 

  134. Rastogi, G., Sani, R.K. (2011). Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In Ahmad et al. (Eds.). Microbes and Microbial Technology: Agricultural and Environmental Applications (Vol. 2, pp 29–57).

  135. Thies, J. E. (2007). Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Science Society of America Journal, 71, 579–591.

    Article  CAS  Google Scholar 

  136. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., & Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied Environmental Microbiology, 56, 1919–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gilbride, K. A., Lee, D. Y., & Beaudette, L. A. (2006). Molecular techniques in wastewater: Understanding microbial communities, detecting pathogens, and real-time process control. Journal of Microbiological Methods, 66, 1–20.

    Article  CAS  PubMed  Google Scholar 

  138. Fakruddin, M., Chowdhury Abhijit. C., Hossain, M.N., Mannan, K.S., & Mazumda, R.M. Pyrosequencing-principles and applications. International Journal of Life Sciences and Pharma Research, 2, 65–76.

  139. Ronaghi, M. (2001). Pyrosequencing sheds light on DNA sequencing. Genome Research, 11, 3–11.

    Article  CAS  PubMed  Google Scholar 

  140. Zwolinski, M. D. (2007). DNA sequencing: Strategies for soil microbiology. Soil Science Society of America Journal, 71, 592–600.

    Article  CAS  Google Scholar 

  141. Metzker, M. L. (2010). Sequencing technologies — The next generation. Nature Reviews Genetics, 11, 31–46.

    Article  CAS  PubMed  Google Scholar 

  142. Absalon, C., Ymele-Leki, P., & Watnick, P. I. (2012). The bacterial biofilm matrix as a platform for protein delivery. MBio, 3, e00127-e112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Perumbakkam, S., Hess, T. F., & Crawford, R. L. (2006). A bioremediation approach using natural transformation in pure-culture and mixed-population biofilms. Biodegradation, 17, 545–557.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, for the financial and infrastructure support to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

SDB, AD, SR, PK, and AV have equally contributed in literature collection, drafting the manuscript, and illustration preparation. SJ has provided the inputs towards the manuscript framing, critical suggestion, and completion of manuscript.

Corresponding author

Correspondence to Samuel Jacob.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathi, S.D., Dilshani, A., Rishivanthi, S. et al. Resource Recycling, Recovery, and Xenobiotic Remediation from E-wastes Through Biofilm Technology: A Review. Appl Biochem Biotechnol 195, 5669–5692 (2023). https://doi.org/10.1007/s12010-022-04055-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04055-8

Keywords

Navigation