Skip to main content

Advertisement

Log in

Effect of Reaction Temperature on Properties of Torrefied Kenaf

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Torrefaction is a thermal treatment method used to achieve solid-phase biofuel. Raw biomass generally have low heating value and high moisture content; thus, these characteristics should be enhanced before using it as a fuel. In this study, herbaceous biomass kenaf was torrefied at 220, 260, 300, and 340 °C under nitrogen atmosphere for 30 min to investigate the effect of temperature on its properties. The properties of torrefied kenaf were classified into two groups: physical properties such as mass and energy yields, moisture content, and proximate analysis and chemical properties such as functional groups and chemical compositions of sugars and lignin. The mass and energy yield of torrefied kenaf decreased as the reaction temperature increased. In addition, an increase in carbon content and a rapid decrease in oxygen content were observed in torrefied kenaf, which indicated the degradation of compounds such as hemicellulose and cellulose. Elemental analysis, proximate analysis, thermal analysis, Fourier transform infrared spectroscopy, and chemical composition analysis were performed to further investigate the characteristics of torrefied kenaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Heaton, E. A., Flavell, R. B., Mascia, P. N., Thomas, S. R., Dohleman, F. G., & Long, S. P. (2008). Herbaceous energy crop development: recent progress and future prospects. Current Opinion in Biotechnology, 19(3), 202–209.

    Article  PubMed  CAS  Google Scholar 

  2. Lam, T. B. T., Hori, K., & Iiyama, K. (2003). Structural characteristics of cell walls of kenaf (Hibiscus cannabinus L.) and fixation of carbon dioxide. Journal of Wood Science, 49(3), 255–261.

    Article  CAS  Google Scholar 

  3. Stolarski, M. J., Krzyżaniak, M., Warmiński, K., Olba-Zięty, E., Penni, D., & Bordiean, A. (2019). Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops. Industrial Crops and Products, 135, 10–20.

    Article  CAS  Google Scholar 

  4. Johnson, G. A., Wyse, D. L., & Sheaffer, C. C. (2013). Yield of perennial herbaceous and woody biomass crops over time across three locations. Biomass and Bioenergy, 58, 267–274.

    Article  Google Scholar 

  5. Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., & Li, C. (2016). Sources of biomass feedstock variability and the potential impact on biofuels production. BioEnergy Research, 9(1), 1–14.

    Article  CAS  Google Scholar 

  6. Zhang, C., Ho, S. H., Chen, W. H., Xie, Y., Liu, Z., & Chang, J. S. (2018). Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Applied Energy, 220, 598–604.

    Article  CAS  Google Scholar 

  7. Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology, 102(2), 1246–1253.

    Article  PubMed  CAS  Google Scholar 

  8. Trubetskaya, A., Grams, J., Leahy, J. J., Johnson, R., Gallagher, P., Monaghan, R. F., & Kwapinska, M. (2020). The effect of particle size, temperature and residence time on the yields and reactivity of olive stones from torrefaction. Renewable Energy, 160, 998–1011.

    Article  CAS  Google Scholar 

  9. Singh, R. K., Sarkar, A., & Chakraborty, J. P. (2020). Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: Estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM). Energy, 198, 117369.

    Article  CAS  Google Scholar 

  10. Channiwala, S. A., & Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051–1063.

    Article  CAS  Google Scholar 

  11. Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169–175.

    Article  CAS  Google Scholar 

  12. Uemura, Y., Omar, W. N., Tsutsui, T., & Yusup, S. B. (2011). Torrefaction of oil palm wastes. Fuel, 90(8), 2585–2591.

    Article  CAS  Google Scholar 

  13. Singh, R. D., Banerjee, J., & Arora, A. (2015). Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 5(1), 19–30.

    Article  Google Scholar 

  14. Schmitt, N., Apfelbacher, A., Jäger, N., Daschner, R., Stenzel, F., & Hornung, A. (2019). Thermo-chemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process – A review. Biofuels Bioproducts and Biorefining, 13(3), 822–837.

    Article  CAS  Google Scholar 

  15. Wyn, H. K., Zárate, S., Carrascal, J., & Yermán, L. (2020). A novel approach to the production of biochar with improved fuel characteristics from biomass waste. Waste and Biomass Valorization, 11(12), 6467–6481.

    Article  CAS  Google Scholar 

  16. Park, Y. S., Chon, B. J., Gu, J. H., & Jeeban, P. (2014). Torrefaction technologies of biomass. Journal of Korea Society of Waste Management, 31(5), 469–479.

    Article  Google Scholar 

  17. Chen, W. H., Lin, B. J., Colin, B., Chang, J. S., Pétrissans, A., Bi, X., & Pétrissans, M. (2018). Hygroscopic transformation of woody biomass torrefaction for carbon storage. Applied energy, 231, 768–776.

    Article  CAS  Google Scholar 

  18. Chen, Y., Liu, B., Yang, H., Yang, Q., & Chen, H. (2014). Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel, 137, 41–49.

    Article  CAS  Google Scholar 

  19. Waters, C. L., Janupala, R. R., Mallinson, R. G., & Lobban, L. L. (2017). Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. Journal of Analytical and Applied Pyrolysis, 126, 380–389.

    Article  CAS  Google Scholar 

  20. Chen, W. H., Eng, C. F., Lin, Y. Y., & Bach, Q. V. (2020). Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Conversion and Management, 221, 113165.

    Article  CAS  Google Scholar 

  21. Zhao, C., Jiang, E., & Chen, A. (2017). Volatile production from pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy Institute, 90(6), 902–913.

    Article  CAS  Google Scholar 

  22. Hu, J., Xiao, R., Shen, D., & Zhang, H. (2013). Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresource technology, 128, 633–639.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.

    Article  CAS  Google Scholar 

  24. Volpe, M., Messineo, A., Mäkelä, M., Barr, M. R., Volpe, R., Corrado, C., & Fiori, L. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology, 206, 106456.

    Article  CAS  Google Scholar 

  25. Bai, Y. P., Zhou, H. M., Zhu, K. R., & Li, Q. (2021). Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydrate Polymers, 271, 118416.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao, Y., Zhou, H. M., Huang, Z. H., & Zhao, R. Y. (2020). Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis. Food Hydrocolloids, 101, 105543.

    Article  CAS  Google Scholar 

  27. Park, Y., Jang, S. K., Park, J. H., Yang, S. Y., Chung, H., Han, Y., & Yeo, H. (2017). Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam. Journal of Wood Science, 63(6), 635–643.

    Article  CAS  Google Scholar 

  28. Chen, W. H., Jang, M. F., Jheng, S. L., Lo, C. J., & Wang, W. (2019). Cellulosic sugars from biomass: Effect of acid presoaking on pretreatment efficiency and operating cost estimation for sugar production. Bioresource Technology Reports, 7, 100259.

    Article  Google Scholar 

  29. Chen, W. H., & Kuo, P. C. (2011). Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 36(2), 803–811.

    Article  CAS  Google Scholar 

  30. Derkacheva, O., & Sukhov, D. (2008). Investigation of lignins by FTIR spectroscopy. Macromolecular Symposia, 265(1), 61–68.

    Article  CAS  Google Scholar 

  31. Gordobil, O., Herrera, R., Llano-Ponte, R., & Labidi, J. (2017). Esterified organosolv lignin as hydrophobic agent for use on wood products. Progress in Organic Coatings, 103, 143–151.

    Article  CAS  Google Scholar 

  32. Henn, K. A., Forsman, N., Zou, T., & Österberg, M. (2021). Colloidal lignin particles and epoxies for bio-based, durable, and multiresistant nanostructured coatings. ACS Applied Materials & Interfaces, 13(29), 34793–34806.

    Article  CAS  Google Scholar 

  33. Alwadani, N., Ghavidel, N., & Fatehi, P. (2021). Surface and interface characteristics of hydrophobic lignin derivatives in solvents and films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609, 125656.

    Article  CAS  Google Scholar 

  34. Cahyanti, M. N., Doddapaneni, T. R. K. C., Madissoo, M., Pärn, L., Virro, I., & Kikas, T. (2021). Torrefaction of agricultural and wood waste: Comparative analysis of selected fuel characteristics. Energies, 14(10), 2774.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the “International Collaborative Energy Technology R&D Program” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20208520090080).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Seong Rae Lim, Kyeong Keun Oh; Data curation: Seong Rae Lim; Formal analysis and investigation: Seong Rae Lim; Funding acquisition: Byung Hwan Um; Methodology: Kyeong Keun Oh; Project administration: Ga Hee Kim; Resources: Byung Hwan Um; Supervision: Byung Hwan Um; Validation: Kyeong Keun Oh; Visualization: Ga Hee Kim; Writing—original draft: Seong Rae Lim; Writing—review and editing: Seong Rae Lim, Ga Hee Kim. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Byung Hwan Um.

Ethics declarations

Consent for Publication

The authors give their consent to publish this article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.R., Kim, G.H., Oh, K.K. et al. Effect of Reaction Temperature on Properties of Torrefied Kenaf. Appl Biochem Biotechnol 194, 6091–6105 (2022). https://doi.org/10.1007/s12010-022-04021-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04021-4

Keywords

Navigation