Skip to main content

Advertisement

Log in

A Novel Approach to the Production of Biochar with Improved Fuel Characteristics from Biomass Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This paper examines the potential for using forward self-sustaining smouldering for the oxidative pyrolysis/torrefaction of lignocellulosic biomass, aiming to produce biochar with fuel characteristics. A vertical, fixed-bed reactor was used for this purpose, where an upwards air flow acted as oxidant. Once smouldering is initiated, the reaction is sustained without the need of supplementary energy. The biochar production was studied at three different airflow rates. In order to perform a systematic study, commercial wood pellets were used for this proof-of-concept. The wood pellets and the biochar obtained were characterized by means of elemental, proximate and thermogravimetric analyses. Results showed that the airflow rate can be used to control the temperature of the process and therefore, the characteristics of the final product. Energy densifications of up to 70% were obtained, and it has shown to increase with the airflow rate. The resulting biochar in the best case scenario has a HHV of 31.3 kJ/g, along with an atomic O/C and H/C ratios of 0.009, and 0.338 respectively. The Van Krevelen diagrams of the biochar samples suggested that energy densification is due to the loss of compounds containing hydrogen and oxygen. The increase of the airflow used during the process showed a reduction in the content of alkali and alkaline earth metallic species in the products, which is desired for its application as solid fuel. This proof-of-concept showed promising results towards the development of an on-site, sustainable, cost effective and continuous process for the torrefaction/pyrolysis of lignocellulosic residue from harvesting operations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tumuluru, J.S., Sokhansanj, S., Hess, J.R., Wright, C.T., Boardman, R.D.: A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7, 384–401 (2011). https://doi.org/10.1089/ind.2011.0014

    Article  Google Scholar 

  2. Sheth, P.N., Babu, B.V.: Production of hydrogen energy through biomass (waste wood) gasification. Int. J. Hydrogen Energy 35, 10803–10810 (2010). https://doi.org/10.1016/J.IJHYDENE.2010.03.009

    Article  Google Scholar 

  3. Joshi, O., Grebner, D.L., Khanal, P.N.: Status of urban wood-waste and their potential use for sustainable bioenergy in Mississppi. Resour. Conserv. Recycl. 102, 20–26 (2015)

    Article  Google Scholar 

  4. Remedio, E.M.: Wood energy and livelihood patterns: a case study from the Philippines. Unasylva 53, 13–22 (2002)

    Google Scholar 

  5. IRENA: Renewable Energy and Jobs. Annu. Rev. (2018)

  6. Gill, A.M., Christian, K.R., Moore, P.H., Forrester, R.I.: Bushfire incidence, fire hazard and fuel reduction burning. Austral. J. Ecol. 12, 299–306 (2006)

    Article  Google Scholar 

  7. Campbell, J., Ager, A.A.: Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis. J. Environ. Manag. 121, 124–132 (2013)

    Article  Google Scholar 

  8. Phanphanich, M., Mani, S.: Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 102, 1246–1253 (2011)

    Article  Google Scholar 

  9. Simpson, A.T., Hemingway, M.A., Seymour, C.: Dangerous (toxic) atmospheres in UK wood pellet and wood chip fuel storage. J. Occup. Environ. Hyg. 13, 699–707 (2016). https://doi.org/10.1080/15459624.2016.1167279

    Article  Google Scholar 

  10. Müllerová, J., Puskajler, J.: Review of health and safety risks of wood chips use. Adv. Mater. Res. 1001, 426–431 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1001.426

    Article  Google Scholar 

  11. FAO: Forestry Production and Trade. http://www.fao.org/forestry/statistics/80938/en/. Accessed Feb 2019

  12. World Energy Council: World Energy Resources 2016. World Energy Counc. 2016. 6–46 (2016). http://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf. Accessed Feb 2019

  13. Jamala, G.: Socio-economic implications of charcoal production and marketing in Nigeria. IOSR J. Agric. Vet. Sci. 5, 41–45 (2013). https://doi.org/10.9790/2380-0544145

    Article  Google Scholar 

  14. Basu, P.: Chapter 5—pyrolysis. In: Basu, P. (ed.) Biomass Gasification, Pyrolysis and Torrefaction, 2nd edn, pp. 147–176. Academic Press, Boston (2013)

    Chapter  Google Scholar 

  15. Basu, P.: Chapter 4—torrefaction. In: Basu, P. (ed.) Biomass Gasification, Pyrolysis and Torrefaction, 2nd edn, pp. 87–145. Academic Press, Boston (2013)

    Chapter  Google Scholar 

  16. Zhan, H., Zhuang, X., Song, Y., Huang, Y., Liu, H., Yin, X., Wu, C.: Evolution of nitrogen functionalities in relation to NOx precursors during low-temperature pyrolysis of biowastes. Fuel 218, 325–334 (2018). https://doi.org/10.1016/J.FUEL.2018.01.049

    Article  Google Scholar 

  17. Gupta, A.K.: Waste and biomass to clean energy. In: Yan, J. (ed.) Handbook of Clean Energy Systems. Wiley, West Sussex (2015)

    Google Scholar 

  18. Koppenjan, J., Kokhansanj, S., Melin, S., Madrali, S.: Status overview of torrefaction technologies. IEA Bioenergy Task 32, 1–54 (2012)

    Google Scholar 

  19. Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G.: More efficient biomass gasification via torrefaction. Energy 31, 3458–3470 (2006)

    Article  Google Scholar 

  20. Chen, W.-H., Peng, J., Bi, X.T.: A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 44, 847–866 (2015). https://doi.org/10.1016/j.rser.2014.12.039

    Article  Google Scholar 

  21. Dhungana, A., Basu, P., Dutta, A.: Effects of reactor design on the torrefaction of biomass. J. Energy Resour. Technol. 134, 41801–41811 (2012). https://doi.org/10.1115/1.4007484

    Article  Google Scholar 

  22. Oduor, N., Githiomi, J., Chikamai, B., Oduoe, N., Githiomi, J., Chikamai, B.: Charcoal Production using Improved Earth, Portable Metal, Drum and Casamance Kilns. Kenya Forestry Research Institute, Nairobi (2006)

    Google Scholar 

  23. Yan, W., Hastings, J.T., Acharjee, T.C., Coronella, C.J., Vasques, V.R.: Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 24, 4738–4742 (2010)

    Article  Google Scholar 

  24. Ghetti, P., Ricca, L., Angelini, L.: Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75, 565–573 (1996). https://doi.org/10.1016/0016-2361(95)00296-0

    Article  Google Scholar 

  25. Haykiri-Acma, H., Yaman, S.: Thermal reactivity of rapeseed (Brassica napus L.) under different gas atmospheres. Bioresour. Technol. 99, 237–242 (2008). https://doi.org/10.1016/j.biortech.2007.01.001

    Article  Google Scholar 

  26. Wang, C., Peng, J., Li, H., Bi, X.T., Legros, R., Lim, C.J.: Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour. Technol. 127, 318–325 (2013)

    Article  Google Scholar 

  27. Rousset, P., Macedo, L., Commandre, J.-M., Moreira, A.: Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J. Anal. Appl. Pyrolysis 96, 86–91 (2012)

    Article  Google Scholar 

  28. Chen, W.-H., Lu, K.-M., Lee, W.-J., Liu, S.-H., Lin, T.-C.: Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl. Energy 114, 104–113 (2014)

    Article  Google Scholar 

  29. Yermán, L., Hadden, R.M.R.M., Carrascal, J., Fabris, I., Cormier, D., Torero, J.L.J.L., Gerhard, J.I.J.I.J.I., Krajcovic, M., Pironi, P., Cheng, Y.L.: Smouldering combustion as a treatment technology for faeces: exploring the parameter space. Fuel 147, 108–116 (2015). https://doi.org/10.1016/j.fuel.2015.01.055

    Article  Google Scholar 

  30. Yermán, L., Cormier, D., Fabris, I., Carrascal, J., Torero, J.L., Gerhard, J.I., Cheng, Y.-L.: Potential bio-oil production from smouldering combustion of faeces. Waste Biomass Valoriz. 8, 329–338 (2017). https://doi.org/10.1007/s12649-016-9586-1

    Article  Google Scholar 

  31. Fabris, I., Cormier, D., Gerhard, J.I., Bartczak, T., Kortschot, M., Torero, J.L., Cheng, Y.-L.: Continuous, self-sustaining smouldering destruction of simulated faeces. Fuel (London, England). 190, 58–66 (2017). https://doi.org/10.1016/j.fuel.2016.11.014

    Article  Google Scholar 

  32. Yermán, L., Wall, H., Torero, J., Gerhard, J.I., Cheng, Y.L.: Smoldering combustion as a treatment technology for feces: sensitivity to key parameters. Combust. Sci. Technol. 188, 968–981 (2016). https://doi.org/10.1080/00102202.2015.1136299

    Article  Google Scholar 

  33. Yermán, L., Wall, H., Torero, J.L.: Experimental investigation on the destruction rates of organic waste with high moisture content by means of self-sustained smoldering combustion. Proc. Combust. Inst. 36, 4419–4426 (2017). https://doi.org/10.1016/j.proci.2016.07.052

    Article  Google Scholar 

  34. Ohlemiller, T.J.: Smouldering combustion. In: DiNenno, P.J., Drysdale, D., Beyler, C.L., Walton, W.D. (eds.) SFPE Handbook of Fire Protection Engineering, pp. 2–210. National Fire Protection Association, Quincy (2008)

    Google Scholar 

  35. Yermán, L.: Self-sustaining smouldering combustion as a waste treatment process. In: Kyprianidis, K.G., Skvaril, J. (eds.) Developments in Combustion Technology. InTech, Rijeka (2016)

    Google Scholar 

  36. Bore, T., Yerman, L., Serna, M.L., Wall, H., Torero, J.L., Scheuerman, A.: Dielectric spectroscopy of artificial faeces for smouldering applications. Presented at the 2016 IEEE Sensors Applications Symposium (SAS). IEEE (2016)

  37. Rashwan, T.L., Gerhard, J.I., Grant, G.P.: Application of self-sustaining smouldering combustion for the destruction of wastewater biosolids. Waste Manag. 50, 201–212 (2016). https://doi.org/10.1016/j.wasman.2016.01.037

    Article  Google Scholar 

  38. Zarate, S., Wyn, H.K., Ng, T., Lay, M.C., Verbeek, C.J., Yerman, L.: Treatment of leafy green waste fibre by means of self-sustaining smouldering combustion. In: Chemeca 2017 (2017)

  39. Pironi, P., Switzer, C., Rein, G., Fuentes, A., Gerhard, J.I., Torero, J.L.: Small-scale forward smouldering experiments for remediation of coal tar in inert media. Proc. Combust. Inst. 32, 1957–1964 (2009). https://doi.org/10.1016/j.proci.2008.06.184

    Article  Google Scholar 

  40. Switzer, C., Pironi, P., Gerhard, J.I.I., Rein, G., Torero, J.L.L.: Self-sustaining smoldering combustion: a novel remediation process for non-aqueous-phase liquids in porous media. Environ. Sci. Technol. 43, 5871–5877 (2009). https://doi.org/10.1021/es803483s

    Article  Google Scholar 

  41. Switzer, C., Pironi, P., Gerhard, J.I.I., Rein, G., Torero, J.L.L.: Volumetric scale-up of smouldering remediation of contaminated materials. J. Hazard. Mater. 268, 51–60 (2014). https://doi.org/10.1016/j.jhazmat.2013.11.053

    Article  Google Scholar 

  42. Pironi, P., Switzer, C., Gerhard, J.I., Rein, G., Torero, J.L.: Self-Sustaining Smoldering Combustion for NAPL Remediation: laboratory Evaluation of Process Sensitivity to Key Parameters. Environ. Sci. Technol. 45, 2980–2986 (2011). https://doi.org/10.1021/es102969z

    Article  Google Scholar 

  43. Vantelon, J.-P., Lodeho, B., Pignoux, S., Ellzey, J.L., Torero, J.L.: Experimental observations on the thermal degradation of a porous bed of tires. Proc. Combust. Inst. 30, 2239–2246 (2005). https://doi.org/10.1016/j.proci.2004.08.109

    Article  Google Scholar 

  44. Scholes, G.C., Gerhard, J.I., Grant, G.P., Major, D.W., Vidumsky, J.E., Switzer, C., Torero, J.L.: Smoldering remediation of coal-tar-contaminated soil: pilot field tests of STAR. Environ. Sci. Technol. 49, 14334–14342 (2015). https://doi.org/10.1021/acs.est.5b03177

    Article  Google Scholar 

  45. Rockwell, G., Lachine, R.S., Jajuee, B.A., Barnes, B.S., Mai, R.D.: US20140241806 (2014)

  46. ASTM: Standard Test Method for Compositional Analysis by Thermogravimetry (2014)

  47. ASTM: Standard test method for bulk density of densified particulate biomass fuels. ASTM Int. (2014). https://doi.org/10.1520/e0873-82r13.4

    Article  Google Scholar 

  48. Basu, P., Rao, S., Acharya, B., Dhungana, A.: Effect of torrefaction on the density and volume changes of coarse biomass particles. Can. J. Chem. Eng. 91, 1040–1044 (2013)

    Article  Google Scholar 

  49. Di Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008). https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  50. Poletto, M., Zattera, A.J., Forte, M.M.C., Santana, R.M.C.: Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour. Technol. 109, 148–153 (2012). https://doi.org/10.1016/j.biortech.2011.11.122

    Article  Google Scholar 

  51. Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T.: In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels. 20, 388–393 (2006). https://doi.org/10.1021/ef0580117

    Article  Google Scholar 

  52. Liu, C., Wang, H., Karim, A.M., Sun, J., Wang, Y.: Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev. 43, 7594–7623 (2014). https://doi.org/10.1039/c3cs60414d

    Article  Google Scholar 

  53. Correia, R., Gonçalves, M., Nobre, C., Mendes, B.: Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresour Technol. 223, 210–218 (2017). https://doi.org/10.1016/j.biortech.2016.10.046

    Article  Google Scholar 

  54. Antal, M.J., Grønli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003). https://doi.org/10.1021/ie0207919

    Article  Google Scholar 

  55. van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35, 3748–3762 (2011)

    Google Scholar 

  56. Sangsuk, S., Suebsiri, S., Puakhom, P.: The metal kiln with heat distribution pipes for high quality charcoal and wood vinegar production. Energy Sustain. Dev. 47, 149–157 (2018). https://doi.org/10.1016/J.ESD.2018.10.002

    Article  Google Scholar 

  57. Rizzo, A.M., Pettorali, M., Nistri, R., Chiaramonti, D.: Mass and energy balances of an autothermal pilot carbonization unit. Biomass Bioenergy 120, 144–155 (2019). https://doi.org/10.1016/j.biombioe.2018.11.009

    Article  Google Scholar 

  58. Pham, X.-H., Piriou, B., Salvador, S., Valette, J., Van de Steene, L.: Oxidative pyrolysis of pine wood, wheat straw and miscanthus pellets in a fixed bed. Fuel Process. Technol. 178, 226–235 (2018). https://doi.org/10.1016/j.fuproc.2018.05.029

    Article  Google Scholar 

  59. Basu, P.: Chapter 3—biomass characteristics. In: Basu, P. (ed.) Biomass Gasification, Pyrolysis and Torrefaction, 2nd edn, pp. 47–86. Academic Press, Boston (2013)

    Chapter  Google Scholar 

  60. Bergman, P.C.A., Boersma, A.R., Zwart, R.W.R., Kiel, J.H.A.: Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Cent. Netherlands, Rep. No. ECN-C-05-013. (2005)

  61. Jenkins, B.M., Baxter, L.L., Miles Jr., T.R., Miles, T.R.: Combustion properties of biomass. Fuel Process. Technol. 54, 17–46 (1998)

    Article  Google Scholar 

  62. Quyn, D.M., Wu, H., Hayashi, J., Li, C.-Z.: Volatilisation and catalytic effects of alkali and alkaline earth metallica species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl an ion-exchangeable Na in coal or char reactivity. Fuel 82, 587–593 (2003)

    Article  Google Scholar 

  63. Okuno, T., Sonoyama, N., Hayashi, J., Li, C.-Z., Sathe, C., Chiba, T.: Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass. Energy Fuels 19, 2164–2171 (2005)

    Article  Google Scholar 

  64. Liu, Z., Han, G.: Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158, 159–165 (2015)

    Article  Google Scholar 

  65. Zhao, H., Song, Q., Wu, X., Yao, Q.: Transformation of alkali and alkaline earth metallic species during pyrolysis and CO2 gasification of rice straw char. J. Fuel Chem. Technol. 46, 27–33 (2018). https://doi.org/10.1016/S1872-5813(18)30002-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Harrison Wall for his help with the experimental setup, as well as Pellet Heaters Australia© for their supply of raw material used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hons K. Wyn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyn, H.K., Zárate, S., Carrascal, J. et al. A Novel Approach to the Production of Biochar with Improved Fuel Characteristics from Biomass Waste. Waste Biomass Valor 11, 6467–6481 (2020). https://doi.org/10.1007/s12649-019-00909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00909-1

Keywords

Navigation