Skip to main content

Advertisement

Log in

α-L-rhamnosidase from Penicillium tardum and Its Application for Biotransformation of Citrus Rhamnosides

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic deramnosylation of flavonoids is a convenient tool for improving the quality of citrus juices. α-L-rhamnosidase with a specific activity of 33.1 units/mg was isolated and characterized from the culture liquid of Penicillium tardum. The molecular weight of the enzyme was 95 kDa according to the data of gel filtration on Sepharose 6B and gel electrophoresis in SDS-PAGE. The pH optimum of the enzyme activity was 5.0, and the thermo optimum was 60 °C. Enzyme showed high stability in the temperature range of 45–50 and at 60–70 °C. It retained 80 to 50% of the initial activity for 90 min. The half-life of α-L-rhamnosidase at 70 °C increased twofold in the presence of 20–40% glycerol and 2.3-fold in the presence of 4 M sorbitol. The enzyme was completely inhibited in the presence of 10−3 M Ag+ and Cd2+ and approximately by 90% in the presence of Fe2+, Fe3+, and Al3+ ions. More than 60%, the enzyme activity was inhibited by Hg2+, Co2+, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide. Activating effect of Ca2+ ions was also noted. Km and Vmax for the hydrolysis of p-nitrophenyl-α-L-rhamnopyranoside and naringin were 0.7 mM and 38.3 µM/min/mg and 1.34 mM and 43.7 µM/min/mg, respectively. Penicillium tardum α-L-rhamnosidase hydrolyzed naringin, neohesperidin, hesperidin, rutin, and narirutin at high rate, which allowed us to consider it as an effective tool for transformation of bioflavonoids in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quideau, S., Deffieu, D., Douat-Casassus, C., & Pouysegu, L. (2011). Plant polyphenols: Chemical properties, biological activities, and synthesis. Angewandte Chemie. International Edition, 50, 586–621.

    Article  CAS  Google Scholar 

  2. Yadav, V., & Yadav, K. D. S. (2010). New fungal for α-L-rhamnosidase an important enzyme used in the synthesis of drugs and drug precursors. Applied Biochemistry and Microbiology, 48, 295–301.

    Article  Google Scholar 

  3. Valentova, K., Vrba, J., Bancirova, M., Ulrichova, J., & Kren, V. (2014). Isoquercitrin: Pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 68, 267–282.

    Article  CAS  Google Scholar 

  4. Xiao, J. (2017). Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Critical Reviews in Food Science and Nutrition, 57, 1874–1905.

    CAS  PubMed  Google Scholar 

  5. Slamova, K., Kapesova, J., & Valentova, K. (2018). “Sweet flavonoids”: Glycosidase-catalyzed modifications. International Journal of Molecular Sciences, 19, 2126.

    Article  Google Scholar 

  6. Kumar, D., Yadav, S., Yadav, S., & Yadav, K. D. S. (2019). An alkali tolerant alpha-L-rhamnosidase from Fusarium moniliforme MTCC-2088 used in de-rhamnosylation of natural glycosides. Bioorganic Chemistry, 84, 24–31.

    Article  CAS  Google Scholar 

  7. Zhang, R., Zhang, B. L., Xie, T., Li, G. C., Tuo, Y., & Xiang, Y. T. (2015). Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve. Biotechnology Letters, 37, 1257–1264.

    Article  CAS  Google Scholar 

  8. Ge, L., Chen, A., Pei, J., Zhao, L., Fang, X., Ding, G., Wang, Z., Xiao, W., & Tang, F. (2017). Enhancing the thermostability of α-L-rhamnosidase from Aspergillus terreus and the enzymatic conversion of rutin to isoquercitrin by adding sorbitol. BMC Biotechnology, 17, 21.

    Article  Google Scholar 

  9. Yadav, M., Sehrawat, N., Sharma, A. K., Kumar, V., & Kumar, A. (2018). Naringinase: Microbial sources, production, and applications in food processing industry. Journal of Microbiology, Biotechnology and Food Sciences, 8, 717–720.

    Article  CAS  Google Scholar 

  10. Guillotin, L., Kim, H., Traore, Y., Moreau, P., Lafite, P., Coquoin, V., Nuccio, S., De Vaumas, R., & Daniellou, R. (2019). Biochemical characterization of the alpha-L-rhamnosidase DtRha from Dictyoglomus thermophilum application to the selective derhamnosylation of natural flavonoids. ACS Omega, 4, 1916–1922.

    Article  CAS  Google Scholar 

  11. Alvarenga, A. E., Amoroso, M. J., Illanes, A., & Castro, G. R. (2014). Cross-linked α-L-rhamnosidase aggregates with potential application in food industry. European Food Research and Technology, 238, 797–801.

    Article  CAS  Google Scholar 

  12. Li, L., Gong, J., Wang, S., Li, G., Gao, T., Jiang, Z., Cheng, Y. S., Ni, H., & Li, Q. (2019). Heterologous expression and characterization of a new clade of Aspergillus alpha-L-rhamnosidase suitable for citrus juice processing. Journal of Agriculture and Food Chemistry, 67, 2926–2935.

    Article  CAS  Google Scholar 

  13. Terada, Y., Kometanti, T., Nishimurah, K., Taki, I., & Okada, S. (1995). Prevention of hesperidin crystal formation in canned mandarin orange syrup and clarified orange juice by hesperidin glycosides. Food Sci. Technol. Int. T., 1, 29–33.

    Article  CAS  Google Scholar 

  14. Gonzalez-Barrio, R., Trindade, L. M., Manzanares, P., de Graaff, L. H., Tomas-Barberan, F. A., & Espin, J. C. (2004). Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungal alpha-L-rhamnosidases. Journal of Agriculture and Food Chemistry, 52, 6136–6142.

    Article  CAS  Google Scholar 

  15. Yanai, T., & Sato, M. (2000). Purification and characterization of an alpha-L-rhamnosidase from Pichia angusta X349. Bioscience, Biotechnology, and Biochemistry, 64, 2179–2185.

    Article  CAS  Google Scholar 

  16. Scaroni, E., Cuevas, C., Carrillo, L., & Ellenrieder, G. (2002). Hydrolytic properties of crude alpha-L-rhamnosidases produced by several wild strains of mesophilic fungi. Letters in Applied Microbiology, 34, 461–465.

    Article  CAS  Google Scholar 

  17. Baudrexl, M., Schwarz, W. H., Zverlov, V. V., & Liebl, W. (2019). Biochemical characterisation of four rhamnosidases from thermophilic bacteria of the genera Thermotoga. Caldicellulosiruptor and Thermoclostridium. Sci. Rep., 9, 15924.

    Article  Google Scholar 

  18. Wu, T., Pei, J., Ge, L., Wang, Z., Ding, G., Xiao, W., & Zhao, L. (2018). Characterization of a alpha-L-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C. Bioorganic Chemistry, 81, 461–467.

    Article  CAS  Google Scholar 

  19. Zhang, T., Yuan, W., Li, M., Miao, M., & Mu, W. (2018). Purification and characterization of an intracellular alpha-L-rhamnosidase from a newly isolated strain, Alternaria alternata SK37.001. Food Chemistry, 269, 63–69.

    Article  CAS  Google Scholar 

  20. Singh, P., Sahota, P. P., & Singh, R. K. (2015). Evaluation and characterization of new α-L-rhamnosidase-producing yeast strains. Journal of General and Applied Microbiology, 61, 149–156.

    Article  CAS  Google Scholar 

  21. Yadav, V., Yadav, S., Yadav, S., & Yadav, K. D. (2012). Alpha-L-rhamnosidase from Aspergillus clavato-nanicus MTCC-9611 active at alkaline pH. Prikladnaia Biokhimiia i Mikrobiologiia, 48, 328–333.

    PubMed  Google Scholar 

  22. Yadav, S., Yadava, S., & Yadav, K. D. (2017). α-L-rhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorganic Chemistry, 70, 222–228.

    Article  CAS  Google Scholar 

  23. Ishikawa, M., Shiono, Y., & Koseki, T. (2017). Biochemical characterization of Aspergillus oryzae recombinant α-L-rhamnosidase expressed in Pichia pastoris. Journal of Bioscience and Bioengineering, 124, 630–634.

    Article  CAS  Google Scholar 

  24. Pachl, P., Skerlova, J., Simcikova, D., Kotik, M., Krenkova, A., Mader, P., Brynda, J., Kapesova, J., Kren, V., Otwinowski, Z., & Rezacova, P. (2018). Crystal structure of native alpha-L-rhamnosidase from Aspergillus terreus. Acta Crystallographica Section D, 74, 1078–1084.

    Article  CAS  Google Scholar 

  25. Li, L., Yu, Y., Zhang, X., Jiang, Z., Zhu, Y., Xiao, A., Ni, H., & Chen, F. (2016). Expression and biochemical characterization of recombinant alpha-L-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528. International Journal of Biological Macromolecules, 85, 391–399.

    Article  CAS  Google Scholar 

  26. Liu, T., Yu, H., Zhang, C., Lu, M., Piao, Y., Ohba, M., Tang, M., Yuan, X., Wei, S., Wang, K., Ma, A., Feng, X., Qin, S., Mukai, C., Tsuji, A., & Jin, F. (2012). Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase. Applied and Environment Microbiology, 78, 4752–4754.

    Article  CAS  Google Scholar 

  27. Gudsenko, O. V., & Varbanets, L. D. (2015). Optimization of cultivation conditions of Penicillium tardum - the α-L-rhamnosidase producer. Mikrobiolohichnyi Zhurnal, 77, 25–31.

    Article  CAS  Google Scholar 

  28. Chaplin, M. E., & Kennedy, J. E. (Eds.). (1986). Carbohydrate analysis: A practical approach. Oxford IRL Press.

    Google Scholar 

  29. Koseki, T., Mese, Y., Nishibori, N., Masaki, K., Fujii, T., Handa, T., Yamane, Y., Shiono, Y., Murayama, T., & Iefuji, H. (2008). Characterization of an alpha-L-rhamnosidase from Aspergillus kawachii and its gene. Applied Microbiology and Biotechnology, 80, 1007–1013.

    Article  CAS  Google Scholar 

  30. Murakami, S., & Kinoshita, M. (2016). Effects of monohydric alcohols and polyols on the thermal stability of a protein. The Journal of Chemical Physics, 44, 125105.

    Article  Google Scholar 

  31. Awad, G., Abd El Aty, A. A., Shehata, A. N., Hassan, M. E., & Elnashar, M. M. (2016). Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin. 3 Biotech, 6, 14.

    Article  Google Scholar 

  32. Sandoval-Cardenas, D. I., Reyes-Guzman, E. G., Gracida, J., Rodriguez Morales, J. A., Ramos-Lopez, M. Á., & Amaro-Reyes, A. (2021). Production of combined-cross-linked hemicellulosic enzyme aggregates from paperboard residues. Biologia, 76, 3919–3924.

    Article  CAS  Google Scholar 

  33. Avila, M., Jaquet, M., Moine, D., Requena, T., Pelaez, C., Arigoni, F., & Jankovic, I. (2009). Physiological and biochemical characterization of the two alpha-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology, 155, 2739–2749.

    Article  CAS  Google Scholar 

  34. Rojas, N. L., Voget, C. E., Hours, R. A., & Cavalitto, S. F. (2011). Purification and characterization of a novel alkaline alpha-Lrhamnosidase produced by Acrostalagmus luteo albus. Journal of Industrial Microbiology and Biotechnology, 38, 1515–1522.

    Article  CAS  Google Scholar 

  35. Hashimoto, W., Miyake, O., Nankai, H., & Murata, K. (2003). Molecular identification of an alpha-L-rhamnosidase from Bacillus sp strain GL1 as an enzyme involved in complete metabolism of gellan. Archives of Biochemistry and Biophysics, 415, 235–244.

    Article  CAS  Google Scholar 

  36. Zverlov, V. V., Hertel, C., Bronnenmeier, K., Hroch, A., Kellermann, J., & Schwarz, W. H. (2000). The thermostable alpha-L-rhamnosidase RamA of Clostridium stercorarium: Biochemical characterization and primary structure of a bacterial alpha-L-rhamnoside hydrolase, a new type of inverting glycoside hydrolase. Molecular Microbiology, 35, 173–179.

    Article  CAS  Google Scholar 

  37. Terry, B., Ha, J., Lise, F. D., Mensitieri, F., Izzo, V., & Sazinsky, M. H. (2020). The crystal structure and insight into the substrate specificity of the α-L rhamnosidase RHA-P from Novosphingobium sp. PP1Y. Archives of Biochemistry and Biophysics, 679, 108189.

    Article  CAS  Google Scholar 

  38. Ni, H., Xiao, A. F., Cai, H. N., Chen, F., You, Q., & Lu, Y. Z. (2012). Purification and characterization of Aspergillus niger α-L-rhamnosidase for the biotransformation of naringin to prunin. African Journal of Microbiology Research, 6, 5276–5284.

    CAS  Google Scholar 

Download references

Funding

The work was funded by the National Academy of Science of Ukraine (No. 0113U001217).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Nataliya Borzova, Olena Gudzenko, and Lyudmila Varbanets. The first draft of the manuscript was written by Nataliya Borzova, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nataliya Borzova.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzova, N., Gudzenko, O. & Varbanets, L. α-L-rhamnosidase from Penicillium tardum and Its Application for Biotransformation of Citrus Rhamnosides. Appl Biochem Biotechnol 194, 4915–4929 (2022). https://doi.org/10.1007/s12010-022-04008-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04008-1

Keywords

Navigation