Skip to main content

Advertisement

Log in

In Vitro and In Vivo Antibiofilm Potential of Eicosane Against Candida albicans

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Candida albicans is the most prevalent fungus in humans, producing infections ranging from mucosal to systemic. C. albicans colonizes mucosal surfaces asymptomatically as commensal, but, if the host environment is disrupted, or if the host immune system is compromised, C. albicans can multiply and infect almost all places in the host. The present study was aimed to identify a promising antibiofilm agent against Candida albicans biofilm. Through the molecular docking approach, it was identified that Eicosane was the top hit among the alkanes screened. Furthermore, in vitro analysis revealed that Eicosane at 100 µg/mL was able to inhibit 60% of C. albicans biofilm without inhibiting the growth. Moreover, light microscopic investigation unveiled the significant reduction in the adhesion and colonization of yeast cells to the matrix on Eicosane-treated samples. The CLSM images showing a reduction in biomass and thickness of C. albicans biofilm in the presence of Eicosane were validated using COMSTAT. The results were well corroborated with SEM micrograph in which a pellucid gap between the cells was observed and colonization was considerably reduced. Further from qPCR analysis, the genes responsible for biofilm formation and hyphal growth were found to be downregulated in the presence of Eicosane. Similarly, Eicosane at BIC was able to significantly inhibit the adhesion and colonization of yeast cells on the chorion of the zebrafish embryos. Moreover, the binding ability of Eicosane to ALS3 was revealed through docking and molecular dynamics (MD) simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data are available within the manuscript and its supplementary document

References

  1. Gagne, J. J., & Goldfarb, N. I. (2007). Candidemia in the in-patient setting: Treatment options and economics. Expert Opinion on Pharmacotherapy, 8, 1643–1650.

    Article  Google Scholar 

  2. Ramage, G., Jose, A., Sherry, L., Lappin, D. F., Jones, B., & Williams, C. (2013). Liposomal amphotericin B displays rapid dose-dependent activity against Candida albicans biofilms. Antimicrobial Agents and Chemotherapy, 57, 2369–2371.

    Article  CAS  Google Scholar 

  3. Bandele, D. A., Nnenna, U. U., Victoria, A. O., & Solomon, B. A. (2021). Isolation and evaluation of Candida species and associated microbes causing gastrointestinal tract infections among patients accessing care at a tertiary health facility in Lagos, Southwest Nigeria. Biomedical Journal of Scientific & Technical Research, 36, 28423–28432.

    Google Scholar 

  4. Ganguly, S., & Mitchell, A. P. (2011). Mucosal biofilms of Candida albicans. Current Opinion in Microbiology, 14, 380–385.

    Article  CAS  Google Scholar 

  5. Kabir, M. A., Hussain, M. A., & Ahmad, Z. (2012). Candida albicans: A model organism for studying fungal pathogens. ISRN Microbiol, 2012, 538694.

    Article  Google Scholar 

  6. Villa, S., Hamideh, M., Weinstock, A., Qasim, M. N., Hazbun, T. R., Sellam, A., ... & Thangamani, S. (2020). Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS yeast research, 20(1), foaa005.

  7. Priya, A., & Pandian, S. K. (2020). Piperine impedes biofilm formation and hyphal morphogenesis of Candida albicans. Frontiers in Microbiology, 11, 756.

    Article  Google Scholar 

  8. Pereira, R., dos Santos Fontenelle, R., de Brito, E., & de Morais, S. (2021). Biofilm of Candida albicans: Formation, regulation and resistance. Journal of Applied Microbiology, 131, 11–22.

    Article  CAS  Google Scholar 

  9. Atriwal, T., Azeem, K., Husain, F. M., Hussain, A., Khan, M. N., Alajmi, M. F., & Abid, M. (2021). Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Frontiers in Microbiology, 12, 932.

    Article  Google Scholar 

  10. Denega, I., d’Enfert, C., & Bachellier-Bassi, S. (2019). Candida albicans biofilms are generally devoid of persister cells. Antimicrobial Agents and Chemotherapy, 63, e01979-e1918.

    Article  CAS  Google Scholar 

  11. Sudbery, P., Gow, N., & Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends in Microbiology, 12, 317–324.

    Article  CAS  Google Scholar 

  12. Alim, D., Sircaik, S., & Panwar, S. L. (2018). The significance of lipids to biofilm formation in Candida albicans: an emerging perspective. Journal of Fungi, 4(4), 140.

  13. Denega, I., d’Enfert, C., & Bachellier-Bassi, S. (2019). Candida albicans biofilms are generally devoid of persister cells. Antimicrobial Agents and Chemotherapy, 63(5), e01979–18.

  14. Ponde, N. O., Lortal, L., Ramage, G., Naglik, J. R., & Richardson, J. P. (2021). Candida albicans biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 47, 91–111.

    Article  CAS  Google Scholar 

  15. Mourer, T., El Ghalid, M., d’Enfert, C., & Bachellier-Bassi, S. (2021). Involvement of amyloid proteins in the formation of biofilms in the pathogenic yeast Candida albicans. Research in Microbiology, 172, 103813.

    Article  CAS  Google Scholar 

  16. Johnson, M. D., & Perfect, J. R. (2010). Use of antifungal combination therapy: Agents, order, and timing. Current Fungal Infection Reports, 4, 87–95.

    Article  Google Scholar 

  17. Malani, A. N., & Kauffman, C. A. (2007). Candida urinary tract infections: Treatment options. Expert Review of Anti-Infective Therapy, 5, 277–284.

    Article  CAS  Google Scholar 

  18. Klepser, M. (2010). The value of amphotericin B in the treatment of invasive fungal infections. Journal of Critical Care, 26(2), 225-e1.

    PubMed  Google Scholar 

  19. de Barros, P. P., Rossoni, R. D., de Souza, C. M., Scorzoni, L., Fenley, J. C., & Junqueira, J. C. (2020). Candida biofilms: An update on developmental mechanisms and therapeutic challenges. Mycopathologia, 185, 415–424.

    Article  Google Scholar 

  20. Bharadwaj, K. K., Rabha, B., Choudhury, B. K., Rosalin, R., Sarkar, T., Baishya, D., Chanu, N. B., Singh, Y. D., Panda, M. K., & Pati, S. (2021). Current strategies in inhibiting biofilm formation for combating urinary tract infections: Special focus on peptides, nano-particles and phytochemicals. Biocatalysis and Agricultural Biotechnology, 38, 102209.

    Article  CAS  Google Scholar 

  21. Ghosh, S., Lahiri, D., Nag, M., Dey, A., Sarkar, T., Biswas, R., Dutta, B., Mukherjee, D., Pati, S., Pattanaik, S. (2022). Analysis of antibiofilm activities of bioactive compounds from honeyweed (Leonurus sibiricus) against P. aeruginosa: An in vitro and in silico approach. Applied Biochemistry and Biotechnology, 1–17.

  22. Ghosh, S., Saha, I., Dey, A., Lahiri, D., Nag, M., Sarkar, T., Pati, S., Rebezov, M., Shariati, M. A., Thiruvengadam, M. (2021). Natural compounds underpinning the genetic regulation of biofilm formation: An overview. South African Journal of Botany.

  23. Meng, L., Sun, C., Zhang, C., Song, S., Sun, X., Ju, J., & Deng, Y. (2019). Efficacy of Compounds Isolated from Streptomyces olivaceus against the Morphogenesis and Virulence of Candida albicans. Marine Drugs, 17(8), 442.

  24. Srivastava, V., & Dubey, A. K. (2016). Anti-biofilm activity of the metabolites of Streptomyces chrestomyceticus strain ADP4 against Candida albicans. Journal of Bioscience and Bioengineering, 122, 434–440.

    Article  CAS  Google Scholar 

  25. Siddharthan, S., Rajamohamed, B. S., & Gopal, V. (2020). Streptomyces diastaticus isolated from the marine crustacean Portunus sanguinolentus with potential antibiofilm activity against Candida albicans. Archives of Microbiology. https://doi.org/10.1007/s00203-020-01918-8

    Article  PubMed  Google Scholar 

  26. Shafreen, R. M., Muthamil, S., & Pandian, S. K. (2014). Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Applied Microbiology and Biotechnology, 98, 6775–6785.

    Article  CAS  Google Scholar 

  27. Venkatachalam, C. M., Jiang, X., Oldfield, T., & Waldman, M. (2003). LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics and Modelling, 21, 289–307.

    Article  CAS  Google Scholar 

  28. Shafreen, R. M. B., Selvaraj, C., Singh, S. K., & Pandian, S. K. (2013). Exploration of fluoroquinolone resistance in Streptococcus pyogenes: Comparative structure analysis of wild-type and mutant DNA gyrase. Journal of Molecular Recognition, 26, 276–285.

    Article  CAS  Google Scholar 

  29. Subramenium, G. A., Swetha, T. K., Iyer, P. M., Balamurugan, K., & Pandian, S. K. (2018). 5-hydroxymethyl-2-furaldehyde from marine bacterium Bacillus subtilis inhibits biofilm and virulence of Candida albicans. Microbiological Research, 207, 19–32.

    Article  CAS  Google Scholar 

  30. Nithyanand, P., Beema Shafreen, R. M., Muthamil, S., & Karutha Pandian, S. (2015). Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiological Research, 179, 20–28.

    Article  CAS  Google Scholar 

  31. Vorregaard, M. (2008). Comstat2 - a modern 3D image analysis environment for biofilms, in Informatics and Mathematical Modelling. Technical University of Denmark.

    Google Scholar 

  32. Westerfield, M. (1993). The zebrafish: A guide for the laboratory use of zebrafish (Brachydanio reriro). University of Oregon.

    Google Scholar 

  33. Beema Shafreen, R., Seema, S., Martinez-Ayala, A. L., Lozano-Grande, M. A., Robles-Sanchez, M., Szterk, A., Grishko, M., Hanuka, E., Katrich, E., & Gorinstein, S. (2019). Binding and potential antibiofilm activities of Amaranthus proteins against Candida albicans. Colloids and Surfaces. B, Biointerfaces, 183, 110479.

    Article  Google Scholar 

  34. Chen, Z.-Y., Li, N.-J., Cheng, F.-Y., Hsueh, J.-F., Huang, C.-C., Lu, F.-I., Fu, T.-F., Yan, S.-J., Lee, Y.-H., & Wang, Y.-J. (2020). The effect of the chorion on size-dependent acute toxicity and underlying mechanisms of amine-modified silver nanoparticles in zebrafish embryos. International Journal of Molecular Sciences, 21, 2864.

    Article  CAS  Google Scholar 

  35. Oh, S.-H., Schliep, K., Isenhower, A., Rodriguez-Bobadilla, R., Vuong, V. M., Fields, C. J., Hernandez, A. G., Hoyer, L. L. (2021). Using genomics to shape the definition of the agglutinin-like sequence (ALS) family in the Saccharomycetales. Frontiers in Cellular and Infection Microbiology11, 794529–794529.

  36. Williams, D., & Lewis, M. (2011). Pathogenesis and treatment of oral candidosis. Journal of Oral Microbiology, 3(1), 5771.

  37. Liu, Y., & Filler, S. G. (2011). Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryotic Cell, 10, 168–173.

    Article  Google Scholar 

  38. Hirschfeld, J. (2014). Dynamic interactions of neutrophils and biofilms. Journal of Oral Microbiology, 6, 26102.

    Article  Google Scholar 

  39. Peters, B. M., Ovchinnikova, E. S., Krom, B. P., Schlecht, L. M., Zhou, H., Hoyer, L. L., Busscher, H. J., van der Mei, H. C., Jabra-Rizk, M. A., & Shirtliff, M. E. (2012). Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology, 158, 2975.

    Article  CAS  Google Scholar 

  40. Naglik, J. R., Fostira, F., Ruprai, J., Staab, J. F., Challacombe, S. J., & Sundstrom, P. (2006). Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. Journal of Medical Microbiology, 55, 1323.

    Article  CAS  Google Scholar 

  41. Hollomon, J. M., Liu, Z., Rusin, S. F., Jenkins, N. P., Smith, A. K., Koeppen, K., Kettenbach, A. N., Myers, L. C., & Hogan, D. A. (2022). The Candida albicans Cdk8-dependent phosphoproteome reveals repression of hyphal growth through a Flo8-dependent pathway. PLoS Genetics, 18, e1009622.

    Article  CAS  Google Scholar 

  42. Li, F., & Palecek, S. P. (2003). EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryotic Cell, 2, 1266–1273.

    Article  CAS  Google Scholar 

  43. Braun, B. R., Kadosh, D., & Johnson, A. D. (2001). NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. The EMBO Journal, 20, 4753–4761.

    Article  CAS  Google Scholar 

  44. Ahmad Khan, M. S., Alshehrei, F., Al-Ghamdi, S. B., Bamaga, M. A., Al-Thubiani, A. S., & Alam, M. Z. (2020). Virulence and biofilms as promising targets in developing antipathogenic drugs against candidiasis. Future Science OA, 6, FSO440.

    Article  CAS  Google Scholar 

  45. Fürnkranz, U., & Walochnik, J. (2021). Nosocomial infections: Do not forget the parasites! Pathogens, 10, 238.

    Article  Google Scholar 

  46. Ahsan, T., Chen, J., Zhao, X., Irfan, M., & Wu, Y. (2017). Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express, 7, 1–9.

    Article  Google Scholar 

  47. Chuah, X. Q., Okechukwu, P. N., Amini, F., & Teo, S. S. (2018). Eicosane, pentadecane and palmitic acid: The effects in in vitro wound healing studies. Asian Pacific Journal of Tropical Biomedicine, 8, 490.

    Article  Google Scholar 

  48. Chathuranga, K., Weerawardhana, A., Dodantenna, N., Ranathunga, L., Cho, W.-K., Ma, J. Y., & Lee, J.-S. (2021). Inhibitory effect of Sargassum fusiforme and its components on replication of respiratory syncytial virus in vitro and in vivo. Viruses, 13, 548.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alagappa University for providing research facilities to carry out the research. Additionally, we thank Chimertech Private Limited for their support provided in preparing the manuscript. This project was supported by Researchers Supporting Project number (RSP-2021/315) King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Writing Original draft, Validation: Raja Mohamed Beema Shafreen, Siddharthan Seema; Methodology: Selvaraj Alagu Lakshmi; Project Administration: Adimoolam Srivathsan; Formal analysis: Kannapiran Tamilmuhilan; Investigation: Anupama Shrestha; Visualization: Balamuralikrishnan Balasubramanian; Writing review and Editing, Data curation, Software: Ranjithkumar Dhandapani, Ragul Paramasivam; Funding: Sami Al Obaid, Saleh H. Salmen; Supervision: Saravanan Muthupandian

Corresponding author

Correspondence to Saravanan Muthupandian.

Ethics declarations

Ethical Approval

This ethical clearance for this study was approved by Institutional Animal Ethics Committee, Alagappa University (Reg NO: 2007/GO/ReBi/S/18/CPCSEA dt 14/03/2018).

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beema Shafreen, R.M., Seema, S., Alagu Lakshmi, S. et al. In Vitro and In Vivo Antibiofilm Potential of Eicosane Against Candida albicans. Appl Biochem Biotechnol 194, 4800–4816 (2022). https://doi.org/10.1007/s12010-022-03984-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03984-8

Keywords

Navigation