Skip to main content
Log in

A Comparative Analysis of Heavy Metal Effects on Medicinal Plants

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Popularity of herbal drugs has always been in high demand, but recently it has been increasing all over the world, especially in India, because of the lower range of adverse health effects as compared to synthetic or man-made drugs. Not only this but their cost-effectiveness and easy availability to the poor people and the masses, particularly in developing countries, are major causes for their demand. But there lies a huge problem during the process of plant collection that affects their medicinal properties to certain degrees. This is caused by heavy metal toxicity in soil in different locations of the Indian subcontinent. This was correlated with their potential to cause health damage. Exposure of humans to heavy metals includes diverse pathways from food to water to consumption and inhalation of polluted air to permanent damage to exposed skin and even by occupational exposure at workplaces. As we can understand, the main mechanisms of heavy metal toxicity include the production of free radicals to affect the host by oxidative stress, damaging biological molecules such as enzymes, proteins, lipids, and even nucleic acids and finally damaging DNA which is the fastest way to carcinogenesis and in addition, neurotoxicity. Therefore, in this paper, we have researched how the plants/herbs are affected due to heavy metal deposition in their habitat and how it can lead to serious clinical complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Annan, K., Dickson, R., Amponsah, I., & Nooni, I. (2013). The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharmacognosy Research., 5(2), 103–108.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalra, V., Gulati, S., Chitralekha, K. T., Pande, P., Makhijani, S. D., & Sharma, C. S. (2000). Plumbism--A mimicker of common childhood symptoms. Indian Journal of Pediatrics, 67(2), 81–86. https://doi.org/10.1007/BF02726170

    Article  CAS  PubMed  Google Scholar 

  3. Banik, S. (2014). Recent advancements and challenges in microbial bioremediation of heavy metals contamination Nutritional assessment of various rice genotypes View project Green synthesis and characterization of nanoparticles View project [Internet]. Available from: https://www.researchgate.net/publication/275056650

  4. Banerjee, M., Sarma, N., Biswas, R., Roy, J., Mukherjee, A., & Giri, A. K. (2008). DNA repair deficiency leads to susceptibility to develop arsenic-induced premalignant skin lesions. International Journal of Cancer, 123(2), 283–287.

    Article  CAS  PubMed  Google Scholar 

  5. Zafar Marg, B., Delhi, N. (2011). Hazardous metals and minerals pollution in India: Sources, toxicity and management Indian National Science Academy.

  6. Zahidin, N. S., Saidin, S., Zulkifli, R. M., Muhamad, I. I., & Ya’akob, H., Nur, H. (2017). A review of Acalypha indica L. (Euphorbiaceae) as traditional medicinal plant and its therapeutic potential. Journal of Ethnopharmacology. Elsevier Ireland Ltd, 207, 146–173.

  7. Adachukwu, I. P., & Yusuf, O. N. (2014). A review of the ethnotherapeutics of medicinal plants used in traditional/alternative medicinal practice in Eastern Nigeria [Internet]. International Journal of Current Microbiology and Applied Sciences, 3. Available from: http://www.ijcmas.com

  8. Hungeling, M., Lechtenberg, M., Fronczek, F. R., & Nahrstedt, A. (2009). Cyanogenic and non-cyanogenic pyridine glucoside from Acalypha indica (Euphorbiaceae). Phytochem., 70, 270–277.

    Article  CAS  Google Scholar 

  9. Nahrstedt, A., Hungeling, M., & Petereit, F. (2006). Flavonoids from Acalypha indica. Fitoterapia, 77, 484–486.

    Article  CAS  PubMed  Google Scholar 

  10. Hossain, M. T., & Hoq, M. O. (2016). Therapeutic use of Adhatoda vasica. Asian Journal of Medical and Biological Research., 2(2), 156–163.

    Article  Google Scholar 

  11. Jabeen, S., Shah, M. T., Khan, S., & Hayat, M. Q. (2010). Determination of major and trace elements in ten important folk therapeutic plants of Haripur basin, Pakistan [Internet]. Journal of Medicinal Plant Research, 4. Available from: http://www.academicjournals.org/JMPR

  12. Gulfraz, M., Arshad, M., Nayyer, N., Kanwal, N., & Nisar, U. (2004). Investigation for bioactive compounds of Berberis Lyceum Royle and Justicia Adhatoda L. Ethnobotanical Leaflets, 2004(1), Article 5.

    Google Scholar 

  13. Ignacimuthu, S., & Shanmugam, N. (2010). Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica Ness. leaves. Journal of Biosciences, 35(4), 565–570.

    Article  CAS  PubMed  Google Scholar 

  14. Jain, S. R., & Sharma, S. N. (1967). Hypoglycaemic drugs of Indian indigenous origin. Planta Medica, 15(4), 439–442. https://doi.org/10.1055/s-0028-1100005

    Article  CAS  PubMed  Google Scholar 

  15. Malathi, R., Kaviyarasan, D., & Chandrasekar, S. (2018). MEDFOOD’18 [1 st February 2018] National Conference on Phytochemicals in Medicinal Plants and Food Preliminary phytochemical analysis of Justicia adhatoda leaves extract using different solvents. International Journal of Pharmaceutics & Drug Analysis, 6, 186–190 Available from: http://ijpda.com

    Google Scholar 

  16. Claeson, U. P., Rn Malmfors, T., Wikman, G., & Bruhn, J. G. (2000). Adhatoda vasica: A critical review of ethnopharmacological and toxicological data [Internet]. Journal of Ethnopharmacology, 72. https://doi.org/10.1016/s0378-8741(00)00225-7

  17. Sarker, A. K., Ahamed, K., Chowdhury, J. U., & Begum, J. (2009). Introduction Characterization of an expectorant herbal basak tea prepared with Adhatoda vasica leaves [Internet]. Bangladesh Journal of Scientific and Industrial Research, 44. Available from: www.banglajol.info

  18. Dilip Chaudhari, S., Someshwar Jamdade, S. (2021). A complete over review on Adhatoda vasica a traditional medicinal plants. Available from: www.ijsdr.org

  19. Kumar Baral, P., Roy, S., & Sultana, S. (2018). A review article on Adhatoda vasica nees: A potential source of bioactive compounds. International Journal of Development Research, 08(11), 23874–23882.

    Google Scholar 

  20. Moscow, S., & Jothivenkatachalam, K. (2012). Study on Mineral content of Some Ayurvedic Indian Medicinal Plants. International Journal of Pharma Sciences and Research (IJPSR), 3(2), 294–299.

    CAS  Google Scholar 

  21. Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119(1), 33–44. https://doi.org/10.1016/s0269-7491(01)00325-6

    Article  CAS  PubMed  Google Scholar 

  22. Wang, X. C., Yan, W. D., An, Z., Lu, Q., Shi, W. M., Cao, Z. H., & Wong, M. H. (2003). Status of trace elements in paddy soil and sediment in Taihu Lake region. Chemosphere., 50(6), 707–710. https://doi.org/10.1016/s0045-6535(02)00209-6

    Article  CAS  PubMed  Google Scholar 

  23. Chandrajith, R., Dissanayake, C. B., & Tobschall, H. J. (2005). The abundances of rarer trace elements in paddy (rice) soils of Sri Lanka. Chemosphere., 58(10), 1415–1420.

    Article  CAS  PubMed  Google Scholar 

  24. Buurman, P. (2017). Manual for soil and water analysis Podzols of Ilha Comprida (SE, Brazil): Organic matter chemistry and decay features View project [Internet]. Available from: https://www.researchgate.net/publication/40145472

  25. Satpathy D, Reddy MV, Dhal SP. (2014). Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the east coast of India. Biomed Research International. 1-11

  26. Tewari, G., & Pande, C. (2013). Health risk assessment of heavy metals in seasonal vegetables from north-west Himalaya. African Journal of Agricultural Research, 8(23), 3019–3024 Available from: http://www.academicjournals.org/AJAR

    Google Scholar 

  27. Jolly, Y. N., Islam, A., & Akbar, S. (2013). Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus., 2(1), 1–8.

    Article  Google Scholar 

  28. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692.

    Article  CAS  PubMed  Google Scholar 

  29. Shukla, M. K. (2016). Review of soil and water chemistry: An integrative approach. Vadose Zone Journal, 15(3), vzj2015.12.0163br.

    Article  Google Scholar 

  30. Reddy, M. V., Satpathy, D., & Dhiviya, K. S. (2013). Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet. Environmental Monitoring and Assessment, 185(8), 6693–6704.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma, R. K., & Agrawal, M. (2005 Jun). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26(2 Suppl), 301–13 PMID: 16334259.

  32. Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: An overview. Journal of Environmental Biology, 26(2 Suppl), 301–313.

    CAS  PubMed  Google Scholar 

  33. Gálvez, E. C., Dachs, J., Lundin, D., Fernández-Pinos, M. C., Sebastián, M., & Vila-Costa, M. (2021). Responses of Coastal Marine Microbiomes Exposed to Anthropogenic Dissolved Organic Carbon. Environmental Science Technology, 55(14), 9609–9621.

    Article  Google Scholar 

  34. Hoffmann, P., Baker, A. J. M., Madulid, D. A., & Proctor, J. (2003). Phyllanthus balgooyi (Euphorbiaceae S.L.), a new nickel-hyperaccumulating species from Palawan and Sabah. Blumea: Journal of Plant Taxonomy and Plant. Geography., 48(1), 193–199.

    Google Scholar 

  35. Monni, S., Salemaa, M., & Millar, N. (2000). The tolerance of Empetrum nigrum to copper and nickel. Environmental Pollution, 109(2), 221–229. https://doi.org/10.1016/s0269-7491(99)00264-x

    Article  CAS  PubMed  Google Scholar 

  36. Hernandez, M. I., Halberstadt, N., Sands, W. D., Janda, K. C., & Grebenev, S. (2000). Autocatalytic oxidation of lead crystallite surfaces [Internet]. Physical Review Letters, 113. Available from: http://science.sciencemag.org/

  37. Thürmer, K., Williams, E., & Reutt-Robey, J. (2002). Autocatalytic oxidation of lead crystallite surfaces. Science, 297(5589), 2033–2035 http://www.jstor.org/stable/3832430

    Article  PubMed  Google Scholar 

  38. Najeeb, U., Ahmad, W., Zia, M. H., Zaffar, M., & Zhou, W. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry, 1(10), S3310–S3317.

    Article  Google Scholar 

  39. Wu, Y., Liang, Q., & Tang, Q. (2011). Effect of Pb on growth, accumulation and quality component of tea plant. Procedia Engineering. Elsevier Ltd, 214–219.

  40. Azeh Engwa, G., Udoka Ferdinand, P., Nweke Nwalo, F., & N. Unachukwu M. (2019). Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World - New Tricks for an Old Dog? https://doi.org/10.5772/intechopen.82511

    Chapter  Google Scholar 

  41. Tamie Matsumoto, S., Sérgio Mantovani, M., Irene Ariza Malaguttii, M., Lúcia Dias, A., Cristina Fonseca, I., & Aparecida Marin-Morales, M. (2006). Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genetics and Molecular Biology, 29(1), 148–158.

    Article  Google Scholar 

  42. Chrestensen, C. A., Starke, D. W., & Mieyal, J. J. (2000). Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. The Journal of Biological Chemistry, 275(34), 26556–26565.

    Article  CAS  PubMed  Google Scholar 

  43. Naganuma, A., Miura, N., Kaneko, S., Mishina, T., Hosoya, S., Miyairi, S., Furuchi, T., & Kuge, S. (2000). GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae. The FASEB Journal, 14(7), 968–972. https://doi.org/10.1096/fasebj.14.7.968

    Article  CAS  PubMed  Google Scholar 

  44. Hartwig, A. (2001). Zinc Finger Proteins as Potential Targets for Toxic Metal Ions: Differential Effects on Structure and Function. Antioxidants & redox signaling., 3, 625–634.

    Article  CAS  Google Scholar 

  45. Faller, P., Kienzler, K., & Krieger-Liszkay, A. (2005). Mechanism of Cd 2+ toxicity: Cd 2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca 2+ site. Biochimica et Biophysica Acta, Bioenergetics, 1706(1–2), 158–164.

    Article  CAS  Google Scholar 

  46. Sharma, S. K., Goloubinoff, P., & Christen, P. (2008). Heavy metal ions are potent inhibitors of protein folding. Biochemical and Biophysical Research Communications, 372(2), 341–345.

    Article  CAS  PubMed  Google Scholar 

  47. Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., & Christen, P. (2014). Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules., 4(1), 252–267. https://doi.org/10.3390/biom4010252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jacobson, T., Navarrete, C., Sharma, S. K., Sideri, T. C., Ibstedt, S., Priya, S., et al. (2012). Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. Journal of Cell Science, 125(21), 5073–5083.

    CAS  PubMed  Google Scholar 

  49. Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., et al. (2015). Heavy metal stress and crop productivity. In Crop Production and Global Environmental Issues (pp. 1–25). Springer International Publishing.

    Google Scholar 

  50. Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science. Hindawi Publishing Corporation, 2014, Article ID 752708, 12 pages. https://doi.org/10.1155/2014/752708

  51. Djingova, R., & Kuleff, I. (2000). Instrumental techniques for trace analysis. Trace Metals in the Environment, 4, 137–185. https://doi.org/10.1016/S0927-5215(00)80008-9

    Article  CAS  Google Scholar 

  52. Van, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell and Environment, 13(3), 195–206 ref.100. https://doi.org/10.1111/j.1365-3040.1990.tb01304.x

    Article  Google Scholar 

  53. Jadia, C. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8(6), 921–928 Available from: http://www.academicjournals.org/AJB

    CAS  Google Scholar 

  54. Sáez, P. L., Bravo, L. A., Sánchez-Olate, M., Bravo, P. B., & Ríos, D. G. (2016). Effect of photon flux density and exogenous sucrose on the photosynthetic performance during <i>In Vitro</i> Culture of <i>Castanea sativa</i&gt. American Journal of Plant Sciences, 07(14), 2087–2105.

    Article  Google Scholar 

  55. Zahir, Z. A., Bot, P. J., Ahmad, I., Akhtar, M. J., & Jamil, A. (2012). Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars [Internet]., 44. Available from: https://www.researchgate.net/publication/236016436

  56. Laghlimi, M., Baghdad, B., Hadi, H. e., & Bouabdli, A. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: A review. Open Journal of Ecology., 05(08), 375–388.

    Article  Google Scholar 

  57. Hussain, A., Abbas, N., Arshad, F., Akram, M., Khan, Z. I., Ahmad, K., et al. (2013). Effects of diverse doses of lead (Pb) on different growth attributes of Zea-Mays L. Agricultural Sciences, 04(05), 262–265.

    Article  Google Scholar 

  58. Rane, J., Singh, A. K., Kumar, M., Boraiah, K. M., Meena, K. K., Pradhan, A., & Prasad, P. V. V. (2021). The adaptation and tolerance of major cereals and legumes to important abiotic stresses. International Journal of Molecular Sciences, 22(23), 12970. https://doi.org/10.3390/ijms222312970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar, G., Singh, R. P., & Sushila. (1993). Nitrate assimilation and biomass production in Sesamum indicuml. Seedlings in a lead enriched environment. Water, Air, and Soil Pollution, 66, 163–171. https://doi.org/10.1007/BF00477067

    Article  CAS  Google Scholar 

  60. Kaji, T., Suzuki, M., Yamamoto, C., Mishima, A., Sakamoto, M., & Kozuka, H. (1995). Environmental Contamination a n d Toxicology Severe Damage of Cultured Vascular Endothelial Cell Monolayer after Simultaneous Exposure to Cadmium and Lead. Archives of Environmental Contamination and Toxicology, 28, 168–172.

  61. Reddy, A.M., Kumar, S.G., Jyothsnakumari, G., Thimmanaik, S., Sudhakar, C. (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc. and bengalgram (Cicer arietinum L.). Chemosphere, 60(1), 97–104.

  62. Terry, N., Zayed, A. M., de Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Biology, 51, 401–432.

    Article  CAS  Google Scholar 

  63. Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Hölzer, R., & Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environmental and Experimental Botany, 52(3), 253–266.

    Article  CAS  Google Scholar 

  64. Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., et al. (2001). Uptake and effects of five heavy metals on seed germination and plant growth in Alfalfa ( L.). Bulletin of Environmental Contamination and Toxicology, 66(6), 0727–0734.

    CAS  Google Scholar 

  65. Rout, G. R., Samantaray, S., & Das, P. (2000). Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) Link. Chemosphere, 40, 855–859.

    Article  CAS  PubMed  Google Scholar 

  66. Wong, J. W. C. (1996). Heavy metal contents in vegetables and market garden soils in Hong Kong. Environmental Technology (United Kingdom), 17(4), 407–414.

    CAS  Google Scholar 

  67. Srivastavaandvk, Madan S. (2002). Influence of chromium on growth and cell division of sugarcane. Indian Journal of Plant Physiol, 5, 228–231.

    Google Scholar 

  68. Jain, R., Srivastava, S. D., & Madan, V. K. (2000). Influence of chromium on growth and cell division of sugarcane. Indian Journal of Plant Physiology, 5, 228–231.

    CAS  Google Scholar 

  69. Tang, S., Wilke, B. M., & Brooks, R. R. (2001). Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Communications in Soil Science and Plant Analysis, 32(5–6), 895–905.

    Article  CAS  Google Scholar 

  70. Prasad, M. N. V., Greger, M., & Landberg, T. (2001). Acacia nilotica L. bark removes toxic elements from solution: Corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. International Journal of Phytoremediation, 3(3), 289–300.

    Article  CAS  Google Scholar 

  71. Boonyapookana, B., Upatham, E. S., Kruatrachue, M., Pokethitiyook, P., & Singhakaew, S. (2002). Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. International Journal of Phytoremediation, 4(2), 87–100.

    Article  CAS  PubMed  Google Scholar 

  72. Reports from IUPAC sponsored symposia (2014). Chemistry International -- News magazine for IUPAC. Feb 6;20(4).

  73. Abah, J., Mashebe, P., Ubwa, S. T., & Denuga, D. D. (2014). Some heavy metals content of cabbage and soil cultivated in the Bezi Bar Farm Area of Katima Mulilo, Namibia. American Journal of Chemistry, 2014(3), 101–108 Available from: http://journal.sapub.org/chemistry

    Google Scholar 

  74. Mushtaq, Z., Asghar, H. N., & Zahir, Z. A. (2021). Comparative growth analysis of okra (Abelmoschus esculentus) in the presence of PGPR and press mud in chromium contaminated soil. Chemosphere., 1, 262.

    Google Scholar 

  75. Pedreno, J. N., Pedreno, J. N., Gomez, I., & Mataix, J. (1995). Effects of chromium on the nutrient element content and morphology of tomato. Journal of Plant Nutrition, 18(4), 815–822.

    Article  Google Scholar 

  76. Khan, NN. (2013). Studies on the effect of an electroplating factory effluent on the germination and growth of tomato (Lycopersicum esculentum) & egg-plant (Solanum melongena). International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net Studies on the Effect of an Electroplating Factory Effluent on the Germination and Growth of Tomato (Lycopersicum esculentum) & Egg-plant (Solanum melongena). Available from: https://www.researchgate.net/publication/264977099.

  77. Sagharyan, M., Ganjeali, A., Cheniany, M., & Mousavi Kouhi, S. M. (2020). Optimization of callus induction with enhancing production of phenolic compounds production and antioxidants activity in callus cultures of Nepeta binaloudensis Jamzad (Lamiaceae). Iranian Journal of Biotechnology, 18(4), e2621. https://doi.org/10.30498/IJB.2020.2621

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sharma, D. C., & Sharma, C. P. (1993). Chromium uptake and its effects on growth and biological yield of wheat. Cereal Research Communications, 21(4), 317–322 http://www.jstor.org/stable/23783985

    CAS  Google Scholar 

  79. Srivastava S, Mishra K, Tandon PK. (2014) Ameliorating effects of iron and zinc on Vigna mungo L. Treated with tannery effluent. Journal of Toxicology. 2014, 1-8

  80. Rai, R., Agrawal, M., & Agrawal, S. B. (2016). Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system. In Plant Responses to Xenobiotics (pp. 127–140). Springer.

    Chapter  Google Scholar 

  81. Sharma, B., Singh, S., & Siddiqi, N. J. (2014). Biomedical implications of heavy metals induced imbalances in redox systems. Biomed Research International. Hindawi Limited, 2014, 1–26.

    Google Scholar 

  82. Keshav Krishna, A., & Rama Mohan, K. (2016). Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India. Environmental Earth Sciences., 75(5), 1–17.

    Article  CAS  Google Scholar 

  83. Florea, A. M., & Büsselberg, D. (2006). Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals, 19, 419–427.

  84. Markowitz, M. (2000). Lead poisoning. Pediatrics in Review, 21(10), 327–335. https://doi.org/10.1542/pir.21-10-327

    Article  CAS  PubMed  Google Scholar 

  85. Martin, S., Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology Briefs from Citizens, 15, 1-6. 8 (11). October 18, 2017.

  86. Brown, M. J., & Margolis, S. (2012). Lead in drinking water and human blood lead levels in the United States. MMWR Suppl., 61(4), 1–9.

    PubMed  Google Scholar 

  87. Paine, A. J. (2001). Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Human & Experimental Toxicology, 20(9), 439–451.

    Article  Google Scholar 

  88. Bagchi, D., Hassoun, E. A., Bagchi, M., Muldoon, D. F., & Stohs, S. J. (1995). Oxidative stress induced by chronic administration of sodium dichromate [Cr(VI)] to rats. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 110(3), 281–287. https://doi.org/10.1016/0742-8413(94)00103-h

    Article  CAS  Google Scholar 

  89. Alkadi, H. (2020). A review on free radicals and antioxidants. Infectious Disorders Drug Targets, 20(1), 16–26. https://doi.org/10.2174/1871526518666180628124323

    Article  CAS  PubMed  Google Scholar 

  90. Tiwari, A., & Jatawa, S. K. (2011). Free radicals and antioxidants: A [Internet]. Review. Journal of Pharmacy Research. Available from: www.jpronline.info

  91. Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Silbergeld, E. K., Waalkes, M., & Rice, J. M. (2000). Lead as a carcinogen: Experimental evidence and mechanisms of action. American Journal of Industrial Medicine, 38(3), 316–323. https://doi.org/10.1002/1097-0274(200009)38:3<316::aid-ajim11>3.0.co;2-p

    Article  CAS  PubMed  Google Scholar 

  93. Nihei, M. K., Desmond, N. L., McGlothan, J. L., Kuhlmann, A. C., & Guilarte, T. R. (2000). N-methyl-D-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience., 99(2), 233–242. https://doi.org/10.1016/s0306-4522(00)00192-5

    Article  CAS  PubMed  Google Scholar 

  94. Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell., 87(7), 1327–1338. https://doi.org/10.1016/s0092-8674(00)81827-9

    Article  CAS  PubMed  Google Scholar 

  95. Neal, A. P., Worley, P. F., & Guilarte, T. R. (2011). Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. NeuroToxicology., 32(2), 281–289.

    Article  CAS  PubMed  Google Scholar 

  96. Xu, J., Yan, H. C., Yang, B., Tong, L. S., Zou, Y. X., & Tian, Y. (2009). Effects of lead exposure on hippocampal metabotropic glutamate receptor subtype 3 and 7 in developmental rats. Journal of Negative Results in biomedicine, 8, 1–8.

    Article  CAS  Google Scholar 

  97. Xu, S. Z., & Rajanna, B. (2006). Glutamic acid reverses Pb2+-induced reductions of NMDA receptor subunits in vitro. NeuroToxicology., 27(2), 169–175.

    Article  CAS  PubMed  Google Scholar 

  98. Mathern, G. W., Pretorius, J. K., Mendoza, D., Leite, J. P., Chimelli, L., Born, D. E., Fried, I., Assirati, J. A., Ojemann, G. A., Adelson, P. D., Cahan, L. D., & Kornblum, H. I. (1999). Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsy patients. Annals of Neurology, 46(3), 343–358. https://doi.org/10.1002/1531-8249(199909)46:3<343::aid-ana10>3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  99. Acosta, G., Hasenkamp, W., Daunais, J. B., Friedman, D. P., Grant, K. A., & Hemby, S. E. (2010). Ethanol self-administration modulation of NMDA receptor subunit and related synaptic protein mRNA expression in prefrontal cortical fields in cynomolgus monkeys. Brain Research, 8(1318), 144–154.

    Article  Google Scholar 

  100. Lasley, S. M., & Gilbert, M. E. (1996). Presynaptic glutamatergic function in dentate gyrus in vivo is diminished by chronic exposure to inorganic lead. Brain Research, 736(1-2), 125–134. https://doi.org/10.1016/0006-8993(96)00666-x

    Article  CAS  PubMed  Google Scholar 

  101. Xiao, C., Gu, Y., Zhou, C. Y., Wang, L., Zhang, M. M., & Ruan, D. Y. (2006). Pb2+ impairs GABAergic synaptic transmission in rat hippocampal slices: A possible involvement of presynaptic calcium channels. Brain Research, 1088(1), 93–100.

    Article  CAS  PubMed  Google Scholar 

  102. Braga, M. F., Pereira, E. F., & Albuquerque, E. X. (1999). Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Research, 826(1), 22–34. https://doi.org/10.1016/s0006-8993(99)01194-4

    Article  CAS  PubMed  Google Scholar 

  103. Peng, S., Hajela, R. K., & Atchison, W. D. (2002). Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells. Molecular Pharmacology, 62(6), 1418–1430. https://doi.org/10.1124/mol.62.6.1418

    Article  CAS  PubMed  Google Scholar 

  104. Waites, C. L., & Garner, C. C. (2011). Presynaptic function in health and disease. Trends in Neurosciences, 34(6), 326–337. https://doi.org/10.1016/j.tins.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  105. Mirnics K, Middleton FA, Lewis DA, Levitt P. (2001). Review Review Review. Vol. 24, Trends in Neurosciences. https://doi.org/10.1016/s0166-2236(00)01862-2.

  106. Konur, S., & Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron, 46, 401–405.

  107. Szymańska, R., & Kruk, J. (2008). Tocopherol content and isomers’ composition in selected plant species. Plant Physiology and Biochemistry, 46(1), 29–33.

    Article  PubMed  Google Scholar 

  108. Kumar, A., Prasad, M. N. V., & Sytar, O. (2012). Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere., 89(9), 1056–1065.

    Article  CAS  PubMed  Google Scholar 

  109. Hissin, P. J., & Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analytical Biochemistry, 74(1), 214–226. https://doi.org/10.1016/0003-2697(76)90326-2

    Article  CAS  PubMed  Google Scholar 

  110. Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006). Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere., 65(6), 1027–1039.

    Article  CAS  PubMed  Google Scholar 

  111. Dey, S. K., Jena, P. P., & Kundu, S. (2009). Antioxidative efficiency of Triticum aestivum L. exposed to chromium stress. Journal of Environmental Biology, 30(4), 539–544.

    CAS  PubMed  Google Scholar 

  112. Samantary, S. (2002). Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere., 47(10), 1065–1072. https://doi.org/10.1016/s0045-6535(02)00091-7

    Article  CAS  PubMed  Google Scholar 

  113. Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution, 109(1), 69–74. https://doi.org/10.1016/s0269-7491(99)00238-9

    Article  CAS  PubMed  Google Scholar 

  114. le Guédard, M., Faure, O., Bessoule, J.-J., & Bessoule Soundness, J.-J. (2012). Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola. Environmental and Experimental Botany, 76, 54–59 Available from: https://hal.archives-ouvertes.fr/hal-00667913

    Article  Google Scholar 

  115. Bagchi, D., Vuchetich, P. J., Bagchi, M., Hassoun, E. A., Tran, M. X., Tang, L., & Stohs, S. J. (1997). Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radical Biology & Medicine, 22(3), 471–478. https://doi.org/10.1016/s0891-5849(96)00352-8

    Article  CAS  Google Scholar 

  116. Labra, M., Grassi, F., Imazio, S., di Fabio, T., Citterio, S., Sgorbati, S., et al. (2004). Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere., 54(8), 1049–1058.

    Article  CAS  PubMed  Google Scholar 

  117. Rise M, Cojocaru M, Gottlieb HE, Goldschmidt EE. (1989). Accumulation of a-Tocopherol in Senescing Organs as Related to Chlorophyll Degradation. Vol. 89, Plant Physiol. https://doi.org/10.1104/pp.89.4.1028.

  118. Liu, D., Zou, J., Wang, M., & Jiang, W. (2008). Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology, 99(7), 2628–2636.

    Article  CAS  PubMed  Google Scholar 

  119. Oliveira, H. (2012). Chromium as an environmental pollutant: Insights on induced plant toxicity. Journal of Botany, 20(2012), 1–8.

    Article  Google Scholar 

  120. Prado, C., Rodríguez-Montelongo, L., González, J. A., Pagano, E. A., Hilal, M., & Prado, F. E. (2010). Uptake of chromium by Salvinia minima: Effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 177(1–3), 546–553.

    Article  CAS  PubMed  Google Scholar 

  121. Rodriguez, E., Azevedo, R., Fernandes, P., & Santos, C. (2011). Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: A flow cytometric and comet assay study in Pisum sativum. Chemical Research in Toxicology, 24(7), 1040–1047.

    Article  CAS  PubMed  Google Scholar 

  122. Knasmuller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C., Paschke, A., et al. (1998). Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutation Research, 420, 37–48.

    Article  CAS  PubMed  Google Scholar 

  123. Vannini, C., Domingo, G., Marsoni, M., Bracale, M., Sestili, S., Ficcadenti, N., et al. (2011). Proteomic changes and molecular effects associated with Cr(III) and Cr(VI) treatments on germinating kiwifruit pollen. Phytochemistry., 72(14–15), 1786–1795.

    Article  CAS  PubMed  Google Scholar 

  124. Shewry, P. R., & Peterson, P. J. (1974). The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.) [Internet]. Journal of Experimental Botany, 25. Available from: http://jxb.oxfordjournals.org/

  125. Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139–156. https://doi.org/10.1023/A:1022504826342

    Article  CAS  Google Scholar 

  126. Kim, Y. J., Kim, J. H., Lee, C. E., Mok, Y. G., Choi, J. S., Shin, H. S., et al. (2006). Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. FEBS Letters, 580(1), 206–210.

    Article  CAS  PubMed  Google Scholar 

  127. Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., et al. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25(3), 335–347.

    Article  CAS  PubMed  Google Scholar 

  128. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International. Elsevier Ltd, 31, 739–753.

  129. López-Luna, J., González-Chávez, M. C., Esparza-García, F. J., & Rodríguez-Vázquez, R. (2009). Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163(2–3), 829–834.

    Article  PubMed  Google Scholar 

  130. Mishra, S., Singh, V., Srivastava, S., Srivastava, R., Srivastava, M. M., Dass, S., et al. (1995). Studies on Uptake of Trivalent and Hexavalent Chromium by Maize (Zea mays). Food and Chemical Toxicology, 33, 393–397.

    Article  CAS  PubMed  Google Scholar 

  131. Hossner LR, Loeppert RH, Newton RJ, Szaniszlo PJ, Attrep M. (1998). Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. 

  132. Paiva, L. B., de Oliveira, J. G., Azevedo, R. A., Ribeiro, D. R., da Silva, M. G., & Vitória, A. P. (2009). Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environmental and Experimental Botany, 65(2–3), 403–409.

    Article  CAS  Google Scholar 

  133. Sundaramoorthy, P., Chidambaram, A., Ganesh, K. S., Unnikannan, P., & Baskaran, L. (2010). Chromium stress in paddy: (i) Nutrient status of paddy under chromium stress; (ii) Phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies, 333(8), 597–607.

    Article  CAS  PubMed  Google Scholar 

  134. Huffman Jr., E. W., & Allaway, W. H. (1973). Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. Journal of Agricultural and Food Chemistry, 21(6), 982–986. https://doi.org/10.1021/jf60190a008

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Engineering and Management, Kolkata, and all the members of the Department of Biotechnology for their kind cooperation in completion of this work.

Author information

Authors and Affiliations

Authors

Contributions

Susmita Mukherjee: Conceptualization and supervision. Nivedita Chatterjee: Investigation and data analyses. Asmeeta Sircar: Writing original draft. Shimantika Maikap: Resources. Abhilasha Singh: Writing original draft. Sudeshna Acharyya: Writing original draft. Sonali Paul: Supervision and writing—reviewing and editing.

Corresponding author

Correspondence to Sonali Paul.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable. The manuscript does not contain any individual person’s data.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Chatterjee, N., Sircar, A. et al. A Comparative Analysis of Heavy Metal Effects on Medicinal Plants. Appl Biochem Biotechnol 195, 2483–2518 (2023). https://doi.org/10.1007/s12010-022-03938-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03938-0

Keywords

Navigation