Skip to main content
Log in

Biochemical Characterization of Solid-State Fermented Cassava Stem (Manihot esculenta Crantz-MEC) and Its Application in Poultry Feed Formulation

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The utilization of solid-state fermentation (SSF) of cassava stem, “Manihot esculenta Crantz-MEC”, is central in this study for its biochemical characterization and formulation of a new poultry feed using a starter culture of Rhizopus oligosporus strain at specified experimental conditions (26 ± 1 °C, 72 h and pH 6). The coupling of R. oligosporus strain to SSF of cassava stem caused significant increase (p < 0.05) in glucose, total reducing sugar (TRS) and total soluble protein (TSP) concentrations at variable but marked effect at 10% inoculum size of the fermented cassava stem, as compared with the unfermented type. Further evaluations of DPPH-radical scavenging activity, total phenolic and flavonoid contents (TPC and TFC), as indices of correlation to antioxidant activity in both fermented and unfermented cassava stems showed marked significant difference with prominence at 10% inoculum size (p < 0.05). Results of high α-amylase activities were observed in fermented cassava stem when compared with the unfermented type (p < 0.05) at increasing inoculum sizes (5–15%) but with marked dominance at 10%. Broiler chicks fed with formulated feed showed marked increase in weight gain at 10% inoculum size of the fermented cassava stem relative to a typical poultry feed. Also, examination of alkaline phosphatase (ALP) and alanine and aspartate aminotransferases (ALT and AST) showed no marked difference in their activities for fermented feed at increasing inoculum sizes when compared with typical poultry feed, respectively (p > 0.05). The study hereby suggests the use of fermented cassava stem as an alternative raw material during formulation of livestock feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The availability of experimental data would be subject to reasonable request.

Code Availability

GraphPad® Prism 9 software was adopted in the analysis of experimental data obtained in this study and graphically illustrated.

References

  1. Avwioroko, O. J., Anigboro, A. A., & Tonukari, N. J. (2016). Biotechnological application of cassava-degrading fungal (CDF) amylase in broiler feed formulation. British Biotechnology Journal, 10(1), 1–12.

    Article  Google Scholar 

  2. Tonukari, N. J., Egbune, E. O., Avwioroko, O. J., Aganbi, E., Orororo, O. C., & Anigboro, A. A. (2016). A novel pig feed formulation containing Aspergillus niger CSA35 pretreated-cassava peels and its effect on growth and selected biochemical parameters of pigs. African Journal of Biotechnology, 15(19), 776–785.

    Article  CAS  Google Scholar 

  3. Anigboro, A., Aganbi, E., & Tonukari, N. J. (2020). Solid state fermentation of maize (Zea mays) offal by Rhizopus oligosporus under acidic and basic conditions. Journal of Scientific Research, 12(4), 751–756.

    Article  Google Scholar 

  4. Aganbi, E., Anigboro, A. A., & Tonukari, N. J. (2020). Changes in glucose, amylase and soluble proteins levels in solid-state fermented yam (Dioscorea sp.) peels by Rhizopus oligosporus. Nigerian Journal of Science and Environment, 18(1), 161–167.

    Google Scholar 

  5. Tonukari, N. J., Ezedom, T., Enuma, C. C., Sakpa, O. S., Avwioroko, O. J., Linda Eraga, L., & Enovwo, O. E. (2015). White gold: Cassava as an industrial base. American Journal of Plant Sciences, 6, 972–979.

    Article  CAS  Google Scholar 

  6. Uchechukwu-Agua, A. D., Caleb, O. J., & Opara, U. L. (2015). Postharvest handling and storage of fresh cassava root and products: A review. Food Bioprocessing Technology, 8, 729–748.

    Article  Google Scholar 

  7. George, O. S., & Sese, B. T. (2012). The effects of whole cassava meal on broiler carcass weight and the optimal inclusion rate of whole cassava meal in broiler production. Science and Engineering Research: Science Education Development Institute, 2, 184–189.

    Google Scholar 

  8. Okhonlaye, A. O., & Foluke, O. O. (2016). Fermentation of Cassava (Manihot esculenta) and ripe plantain peels (Musa paradisiaca) in the production of animal feed. Journal of Advances in Microbiology, 1(2), 230–238.

    Article  Google Scholar 

  9. Avwioroko, O. J., Anigboro, A. A., Unachukwu, N. N., & Tonukari, N. J. (2018). Isolation, identification and in silico analysis of alpha-amylase gene of Aspergillus niger strain CSA35 obtained from cassava undergoing spoilage. Biochemistry and Biophysics Reports, 14, 35–42.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Olugbemi, T. S., Mutayoba, S. K., & Lekule, F. P. (2010). Effect of Moringa (Moringa oleifera) inclusion in cassava based diets fed to broiler chickens. International Journal of Poultry Science, 9(4), 363–367.

    Article  CAS  Google Scholar 

  11. Wang, E., Li, S., Tao, L., Geng, X., & Li, T. (2010). Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Applied Energy, 87, 2839–2845.

    Article  CAS  Google Scholar 

  12. Morgan, N. K., & Choct, M. (2016). Cassava: Nutrient composition and nutritive value in poultry diets. Animal Nutrition, 2, 253–261.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sadh, K. P., Duhan, S., & Duhan, S. J. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5, 1.

    Article  Google Scholar 

  14. Miller, G. L. (1959). Use of the dinitrosalicylic acid reagent for the determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  15. Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry., 177, 751–756.

    Article  CAS  PubMed  Google Scholar 

  16. Nouadri, T., Meraihi, Z., Shahrazed, D. D., & Leila, B. (2010). Purification and characterization of the α-amylase isolated from Penicillium camemberti PL21. African Journal of Biochemistry Research, 4(6), 155–162.

    CAS  Google Scholar 

  17. Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging affects. Chemical and Pharmaceutical Bulletin, 36, 2090–2097.

    Article  CAS  PubMed  Google Scholar 

  18. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  19. Herbert, K. D. (2017). Assessment of maize (Zea mays) as Feed Resource for poultry. https://doi.org/10.5772/65363

  20. Adeleke, O. R., Adiamo, O., & Fawale, O. S. (2017). Nutritional, physicochemical and functional properties of protein concentrate and isolate of newly-developed Bambara groundnut (Vigna subterrenea L.) cultivars. Food Science and Nutrition, 1–14.

  21. Hawashi, M., Aparamarta, H., Widjaja, T., & Gunawan, S. (2019). Optimization of solid state fermentation conditions for cyanide content reduction in cassava leaves using response surface methodology. International Journal of Technology, 10(3), 624–633.

    Article  Google Scholar 

  22. Egbune, E. O., Orhonigbe, I., Adheigu, R. O., Oniyan, U. P., & Tonukari, N. J. (2021). Effect of inoculum size on solid state fermentation of pearl millet (Pennisetum glaucum) by Rhizopus oligosporus. Nigerian Journal of Science and Environment, 20(1), 1–9.

    Google Scholar 

  23. Atta, E. M., Mohamed, N. H., & Abdelgawad, A. A. (2018). Antioxidants: An overview on the natural and synthetic types. European Chemistry Bulletin, 6(8), 365–375.

    Article  Google Scholar 

  24. Apiamu, A., Asagba, S. O., & Tonukari, N. J. (2019). Role of Anthocleista vogelii in serum antioxidant defence system in cadmium-induced oxidative stress in Wistar rats. Beni-Suef University Journal of Basic and Applied Sciences, 8(12), 1–13.

    Google Scholar 

  25. Proestos, C., Boziaris, I. S., Nychas, G. J., & Komaitis, M. (2006). Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chemistry, 95(4), 664–671.

    Article  CAS  Google Scholar 

  26. Estevinho, L., Pereira, A. P., Moreira, L., Dias, L. G., & Pereira, E. (2008). Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chemistry and Toxicology, 46(12), 3774–3779.

    Article  CAS  Google Scholar 

  27. Sumazian, Y., Syahida, A., Hakiman, M., & Maziah, M. (2010). Antioxidant activities, flavonoids, ascorbic acid and phenolic contents of Malaysian vegetables. Journal of Medicinal Plants and Research, 4(10), 881–890.

    Google Scholar 

  28. Andarwulan, N., & Wijaya, H. (2010). Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chemistry, 121(4), 1231–1235.

    Article  CAS  PubMed  Google Scholar 

  29. Chiunghui, L., Minghong, Y., Shihfang, T., Kimhong, G., Hsueyin, H., & Chunnan, L. (2010). Antioxidant triterpenoids from the stems of Momordica charantia. Food Chemistry, 118, 751–756.

    Article  Google Scholar 

  30. Metin, K., Koc, O., Ateşlier, B. B., & Biyik, H. H. (2010). Purification and characterization of αamylase produced by Penicillium citrinum HBF62. African Journal of Biotechnology, 9(45), 7692–7701.

    CAS  Google Scholar 

  31. Aruna, T. E., Aworh, O. C., Raji, A. O., & Olagunju, A. I. (2017). Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Annals of Agricultural Sciences, 62(1), 33–37.

    Article  Google Scholar 

  32. Saxena, R., & Singh, R. (2011). Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Brazilian Journal of Microbiology, 42, 1334–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gous, R. M. (2010). Nutritional limitations on growth and development in poultry. Livestock Science, 130(1), 25–32.

    Article  Google Scholar 

  34. Addass, P. A., Midau, A., Perez, I. K. A., & Magaji, M. Y. (2010). The effect of type and levels of animal protein supplements on the growth rate of rats. Agriculture and Biology Journal of North America, 1(5), 1–12.

    Article  Google Scholar 

  35. Abel, A. A., & Banjo, A. D. (2012). Honeybee floral resources in South-Western Nigeria. Journal of Biology and Life Sciences, 3(1), 2157–6076.

    Google Scholar 

  36. Akhigbe, R. E. (2014). Discordant results in plant toxicity studies in Africa: attempt of standardization. In Toxicological survey of African medicinal plants by V. Kuete (Ed.), (pp. 80–97). 32 Jamstown Road London NW1 7BY: Elsevier Inc.

  37. Asagba, S. O., & Eriyamremu, G. E. (2007). Oral cadmium exposure alters haematological and liver function parameters of rats fed a Nigerian-like diet. Journal of Nutritional & Environmental Medicine, 16(3–4), 267–274.

    Article  CAS  Google Scholar 

  38. Ogbe, R. J., Adenkola, A. Y., & Anefu, E. (2012). Aqueous ethanolic extract of Mangifera indica stem bark effect on the biochemical and haematological parameters of albino rats. Archives of Applied Science Research, 4(4), 1618–1622.

    CAS  Google Scholar 

  39. Dzoyem, J. P., Kuete, V., & Eloff, J. N. (2014). Biochemical parameters in toxicological studies in Africa: significance, principle of methods, data interpretation, and use in plant screenings. In V. Kuete (Ed), Toxicological survey of African medicinal plants (pp. 686–742). Elsevier Inc.

  40. Park, Y. S., Jung, S. T., Kang, S. G., Heo, B. K., Arancibia-Avila, P., Toledo, F., Drzewiecki, J., Namiesnik, J., & Gorinstein, S. (2008). Antioxidants and proteins in ethylene-treated kiwifruits. Food Chemistry, 107, 640–648.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ikponmwosa Ojo: Resource investigation. Augustine Apiamu: Supervision, formal analysis and manuscript drafting. Egoamaka O. Egbune: Resources, methodology, investigation and manuscript drafting. Nyerhovwo J. Tonukari: Conceptualization, methodology, supervision and editing.

Corresponding author

Correspondence to Augustine Apiamu.

Ethics declarations

Ethical Approval

No ethical approval was solicited for in regard to this study, but experimental procedures were done, where appropriate, following international standards.

Consent to Participate

All authors showed absolute commitment to participate in this study from conceptualization through experimentation to final draft of manuscript.

Consent for Publication

Authors enlisted in this research work are aware of this submission and have given their respective consents for its publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojo, I., Apiamu, A., Egbune, E.O. et al. Biochemical Characterization of Solid-State Fermented Cassava Stem (Manihot esculenta Crantz-MEC) and Its Application in Poultry Feed Formulation. Appl Biochem Biotechnol 194, 2620–2631 (2022). https://doi.org/10.1007/s12010-022-03871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03871-2

Keywords

Navigation