Skip to main content

Advertisement

Log in

Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chronic elevation of sugar and oxidative stress generally results in development of advanced glycation end products (AGEs) in diabetic individuals. Accumulation of AGEs in an individual can give rise to the activation of several pathways that will ultimately lead to various complications. Such AGEs can also be prepared in an in vitro environment. For an in vitro preparation of advanced glycation end products (AGEs), proteins, lipids, or nucleic acids are generally required to be incubated with reducing sugars at a physiological temperature or higher depending upon the protocol optimized for its preparation. Certain other factors are also optimized and added to the buffer to hasten its preparation or alter the properties of prepared AGEs. Through this review, we intend to highlight the various studies related to the experimental procedures for the preparation of different types of AGEs. In addition, we present the comparative study of methodologies optimized for the preparation of AGEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data will be available upon request.

References

  1. Vistoli, G., De Maddis, D., Cipak, A., Zarkovic, N., Carini, M., & Aldini, G. (2013). Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radical Research, 47(Suppl 1), 3–27. https://doi.org/10.3109/10715762.2013.815348

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz, H. H., Ramasamy, R., & Schmidt, A. M. (2020). Advanced glycation end products: Building on the concept of the “common soil” in metabolic disease. Endocrinology, 161(1), bqz006. https://doi.org/10.1210/endocr/bqz006

    Article  PubMed  Google Scholar 

  3. Gkogkolou, P., & Böhm, M. (2012). Advanced glycation end products: Key players in skin aging? Dermato-Endocrinology, 4(3), 259–270. https://doi.org/10.4161/derm.22028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monnier, V. M. (1990). Nonenzymatic glycosylation, the Maillard reaction and the aging process. Journal of Gerontology, 45(4), B105–111. https://doi.org/10.1093/geronj/45.4.b105

    Article  CAS  PubMed  Google Scholar 

  5. Gill, V., Kumar, V., Singh, K., Kumar, A., & Kim, J. J. (2019). Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules, 9(12), E888. https://doi.org/10.3390/biom9120888

    Article  CAS  PubMed  Google Scholar 

  6. Huebschmann, A. G., Regensteiner, J. G., Vlassara, H., & Reusch, J. E. B. (2006). Diabetes and advanced glycoxidation end products. Diabetes Care, 29(6), 1420–1432. https://doi.org/10.2337/dc05-2096

    Article  CAS  PubMed  Google Scholar 

  7. Chhabra, A., Bhatia, A., Ram, A. K., & Goel, S. (2017). Increased advanced glycation end product specific fluorescence in repeatedly heated used cooking oil. Journal of Food Science and Technology, 54(8), 2602–2606. https://doi.org/10.1007/s13197-017-2682-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aguirre, D., Corradini, M., Candogan, K., & Canovas, G. (2016). High pressure processing in combination with high temperature and other preservation factors. In Food Engineering Series (pp. 193–215). https://doi.org/10.1007/978-1-4939-3234-4_11

  9. Singh, V. P., Bali, A., Singh, N., & Jaggi, A. S. (2014). Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 18(1), 1–14. https://doi.org/10.4196/kjpp.2014.18.1.1

    Article  CAS  Google Scholar 

  10. Forbes, J. M., Yee, L. T. L., Thallas, V., Lassila, M., Candido, R., Jandeleit-Dahm, K. A. … Allen, T. J. (2004). Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes, 53(7), 1813–1823. https://doi.org/10.2337/diabetes.53.7.1813

    Article  CAS  PubMed  Google Scholar 

  11. Stitt, A. W. (2005). The maillard reaction in eye diseases. Annals of the New York Academy of Sciences, 1043, 582–597. https://doi.org/10.1196/annals.1338.066

    Article  CAS  PubMed  Google Scholar 

  12. Uribarri, J., Peppa, M., Cai, W., Goldberg, T., Lu, M., Baliga, S. … Vlassara, H. (2003). Dietary glycotoxins correlate with circulating advanced glycation end product levels in renal failure patients. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 42(3), 532–538. https://doi.org/10.1016/s0272-6386(03)00779-0

    Article  CAS  Google Scholar 

  13. Münch, G., Thome, J., Foley, P., Schinzel, R., & Riederer, P. (1997). Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Research. Brain Research Reviews, 23(1–2), 134–143. https://doi.org/10.1016/s0165-0173(96)00016-1

    Article  PubMed  Google Scholar 

  14. Kuzan, A. (2021). Toxicity of advanced glycation end products (Review). Biomedical Reports, 14(5), 46. https://doi.org/10.3892/br.2021.1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prasad, K., Dhar, I., & Caspar-Bell, G. (2015). Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. The International Journal of Angiology: Official Publication of the International College of Angiology, Inc, 24(2), 75–80. https://doi.org/10.1055/s-0034-1396413

    Article  Google Scholar 

  16. Nicholl, I. D., Stitt, A. W., Moore, J. E., Ritchie, A. J., Archer, D. B., & Bucala, R. (1998). Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Molecular Medicine (Cambridge, Mass.), 4(9), 594–601

    CAS  PubMed Central  Google Scholar 

  17. Zheng, F., He, C., Cai, W., Hattori, M., Steffes, M., & Vlassara, H. (2002). Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes/Metabolism Research and Reviews, 18(3), 224–237. https://doi.org/10.1002/dmrr.283

    Article  PubMed  Google Scholar 

  18. Chen, J. H., Lin, X., Bu, C., & Zhang, X. (2018). Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutrition & Metabolism, 15, 72. https://doi.org/10.1186/s12986-018-0306-7

    Article  CAS  Google Scholar 

  19. Simm, A., Wagner, J., Gursinsky, T., Nass, N., Friedrich, I., Schinzel, R., & Scheubel, R. J. (2007). Advanced glycation endproducts: A biomarker for age as an outcome predictor after cardiac surgery? Experimental Gerontology, 42(7), 668–675. https://doi.org/10.1016/j.exger.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  20. Brownlee, M., Cerami, A., & Vlassara, H. (1988). Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. The New England Journal of Medicine, 318(20), 1315–1321. https://doi.org/10.1056/NEJM198805193182007

    Article  CAS  PubMed  Google Scholar 

  21. Alikhani, M., Alikhani, Z., Boyd, C., MacLellan, C. M., Raptis, M., Liu, R. … Graves, D. T. (2007). Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone, 40(2), 345–353. https://doi.org/10.1016/j.bone.2006.09.011

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy, D. M., Skillen, A. W., & Self, C. H. (1994). Glycation of monoclonal antibodies impairs their ability to bind antigen. Clinical and Experimental Immunology, 98(2), 245–251

    Article  CAS  Google Scholar 

  23. Ahmad, S., Moinuddin, R. H., & Ali, A. (2012). Physicochemical studies on glycation-induced structural changes in human IgG. IUBMB life, 64(2), 151–156. https://doi.org/10.1002/iub.582

  24. Iberg, N., & Flückiger, R. (1986). Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. The Journal of Biological Chemistry, 261(29), 13542–13545

    Article  CAS  Google Scholar 

  25. Barnaby, O. S., Cerny, R. L., Clarke, W., & Hage, D. S. (2011). Comparison of modification sites formed on human serum albumin at various stages of glycation. Clinica Chimica Acta; International Journal of Clinical Chemistry, 412(3–4), 277–285. https://doi.org/10.1016/j.cca.2010.10.018

    Article  CAS  PubMed  Google Scholar 

  26. Hasan, N. A. (2009). Effects of trace elements on albumin and lipoprotein glycation in diabetic retinopathy. Saudi Medical Journal, 30(10), 1263–1271

    PubMed  Google Scholar 

  27. Rubenstein, D. A., & Yin, W. (2009). Glycated albumin modulates platelet susceptibility to flow induced activation and aggregation. Platelets, 20(3), 206–215. https://doi.org/10.1080/09537100902795492

    Article  CAS  PubMed  Google Scholar 

  28. Unoki, H., Bujo, H., Yamagishi, S., Takeuchi, M., Imaizumi, T., & Saito, Y. (2007). Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes. Diabetes Research and Clinical Practice, 76(2), 236–244. https://doi.org/10.1016/j.diabres.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  29. Unoki, H., & Yamagishi, S. (2008). Advanced glycation end products and insulin resistance. Current Pharmaceutical Design, 14(10), 987–989. https://doi.org/10.2174/138161208784139747

    Article  CAS  PubMed  Google Scholar 

  30. Dunn, E. J., Philippou, H., Ariëns, R. S., & Grant, P. J. (2006). Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia, 49(5), 1071–1080. https://doi.org/10.1007/s00125-006-0197-4

    Article  CAS  PubMed  Google Scholar 

  31. Jörneskog, G., Hansson, L. O., Wallen, N. H., Yngen, M., & Blombäck, M. (2003). Increased plasma fibrin gel porosity in patients with Type I diabetes during continuous subcutaneous insulin infusion. Journal of thrombosis and haemostasis: JTH, 1(6), 1195–1201. https://doi.org/10.1046/j.1538-7836.2003.00301.x

    Article  PubMed  Google Scholar 

  32. Chrysanthou, M., Miro Estruch, I., Rietjens, I. M. C. M., Wichers, H. J., & Hoppenbrouwers, T. (2022). In vitro methodologies to study the role of advanced glycation end products (AGEs) in neurodegeneration. Nutrients, 14(2), 363. https://doi.org/10.3390/nu14020363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: A review. Diabetologia, 44(2), 129–146. https://doi.org/10.1007/s001250051591

    Article  CAS  PubMed  Google Scholar 

  34. Münch, G., Schicktanz, D., Behme, A., Gerlach, M., Riederer, P., Palm, D., & Schinzel, R. (1999). Amino acid specificity of glycation and protein–AGE crosslinking reactivities determined with a dipeptide SPOT library. Nature Biotechnology, 17(10), 1006–1010. https://doi.org/10.1038/13704

    Article  PubMed  Google Scholar 

  35. Nowotny, K., Schröter, D., Schreiner, M., & Grune, T. (2018). Dietary advanced glycation end products and their relevance for human health. Ageing Research Reviews, 47, 55–66. https://doi.org/10.1016/j.arr.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  36. Bierhaus, A., Hofmann, M. A., Ziegler, R., & Nawroth, P. P. (1998). AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovascular Research, 37(3), 586–600. https://doi.org/10.1016/s0008-6363(97)00233-2

    Article  CAS  PubMed  Google Scholar 

  37. Hodge, J. E. (1953). Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1(15), 928–943. https://doi.org/10.1021/jf60015a004

    Article  CAS  Google Scholar 

  38. Thornalley, P. J. (1996). Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification–a role in pathogenesis and antiproliferative chemotherapy. General Pharmacology, 27(4), 565–573. https://doi.org/10.1016/0306-3623(95)02054-3

    Article  CAS  PubMed  Google Scholar 

  39. Luevano-Contreras, C., Garay-Sevilla, M. E., & Chapman-Novakofski, K. (2013). Role of dietary advanced glycation end products in diabetes mellitus. Journal of Evidence-Based Complementary & Alternative Medicine, 18(1), 50–66. https://doi.org/10.1177/2156587212460054

    Article  CAS  Google Scholar 

  40. Nass, N., Bartling, B., Navarrete Santos, A., Scheubel, R. J., Börgermann, J., Silber, R. E., & Simm, A. (2007). Advanced glycation end products, diabetes and ageing. Zeitschrift Fur Gerontologie Und Geriatrie, 40(5), 349–356. https://doi.org/10.1007/s00391-007-0484-9

    Article  CAS  PubMed  Google Scholar 

  41. O’Brien, J., & Morrissey, P. A. (1989). Nutritional and toxicological aspects of the Maillard browning reaction in foods. Critical Reviews in Food Science and Nutrition, 28(3), 211–248. https://doi.org/10.1080/10408398909527499

    Article  PubMed  Google Scholar 

  42. Ott, C., Jacobs, K., Haucke, E., Navarrete Santos, A., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biology, 2, 411–429. https://doi.org/10.1016/j.redox.2013.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beisswenger, B. G. K., Delucia, E. M., Lapoint, N., Sanford, R. J., & Beisswenger, P. J. (2005). Ketosis leads to increased methylglyoxal production on the Atkins diet. Annals of the New York Academy of Sciences, 1043, 201–210. https://doi.org/10.1196/annals.1333.025

    Article  CAS  PubMed  Google Scholar 

  44. Turk, Z. (2010). Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiological Research, 59(2), 147–156. https://doi.org/10.33549/physiolres.931585

    Article  CAS  PubMed  Google Scholar 

  45. Oya, T., Hattori, N., Mizuno, Y., Miyata, S., Maeda, S., Osawa, T., & Uchida, K. (1999). Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. The Journal of Biological Chemistry, 274(26), 18492–18502. https://doi.org/10.1074/jbc.274.26.18492

    Article  CAS  PubMed  Google Scholar 

  46. Bunn, H. F., & Higgins, P. J. (1981). Reaction of monosaccharides with proteins: Possible evolutionary significance. Science (New York, N.Y.), 213(4504), 222–224. https://doi.org/10.1126/science.12192669

    Article  CAS  Google Scholar 

  47. Gugliucci, A. (2017). Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Advances in Nutrition (Bethesda, Md.), 8(1), 54–62. https://doi.org/10.3945/an.116.013912

    Article  CAS  Google Scholar 

  48. Paul, R. G., & Bailey, A. J. (1996). Glycation of collagen: The basis of its central role in the late complications of ageing and diabetes. The International Journal of Biochemistry & Cell Biology, 28(12), 1297–1310. https://doi.org/10.1016/s1357-2725(96)00079-9

    Article  CAS  Google Scholar 

  49. Monnier, V. M., Glomb, M., Elgawish, A., & Sell, D. R. (1996). The mechanism of collagen cross-linking in diabetes: A puzzle nearing resolution. Diabetes, 45 Suppl(3), 67–72. https://doi.org/10.2337/diab.45.3.s67

    Article  Google Scholar 

  50. Rojas, A., Delgado-López, F., González, I., Pérez-Castro, R., Romero, J., & Rojas, I. (2013). The receptor for advanced glycation end-products: A complex signaling scenario for a promiscuous receptor. Cellular Signalling, 25(3), 609–614. https://doi.org/10.1016/j.cellsig.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  51. Miyata, T., Ueda, Y., Shinzato, T., Iida, Y., Tanaka, S., Kurokawa, K., … Maeda, K. (1996). Accumulation of albumin-linked and free-form pentosidine in the circulation of uremic patients with end-stage renal failure: renal implications in the pathophysiology of pentosidine. Journal of the American Society of Nephrology: JASN, 7(8), 1198–1206. https://doi.org/10.1681/ASN.V781198

  52. Sell, D. R., & Monnier, V. M. (2012). Molecular basis of arterial stiffening: Role of glycation – A mini-review. Gerontology, 58(3), 227–237. https://doi.org/10.1159/000334668

    Article  CAS  PubMed  Google Scholar 

  53. Monnier, V. M., Nagaraj, R. H., Portero-Otin, M., Glomb, M., Elgawish, A. H., Sell, D. R., & Friedlander, M. A. (1996). Structure of advanced Maillard reaction products and their pathological role. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 11(Suppl 5), 20–26. https://doi.org/10.1093/ndt/11.supp5.20

    Article  CAS  Google Scholar 

  54. Baynes, J. W. (2002). The Maillard hypothesis on aging: Time to focus on DNA. Annals of the New York Academy of Sciences, 959, 360–367. https://doi.org/10.1111/j.1749-6632.2002.tb02107.x

    Article  CAS  PubMed  Google Scholar 

  55. Imanaga, Y., Sakata, N., Takebayashi, S., Matsunaga, A., Sasaki, J., Arakawa, K., … Takano, T. (2000). In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques Atherosclerosis, 150(2), 343–355. https://doi.org/10.1016/s0021-9150(99)00396-2

  56. Meade, S. J., Miller, A. G., & Gerrard, J. A. (2003). The role of dicarbonyl compounds in non-enzymatic crosslinking: A structure-activity study. Bioorganic & Medicinal Chemistry, 11(6), 853–862. https://doi.org/10.1016/s0968-0896(02)00564-3

    Article  CAS  Google Scholar 

  57. Nemet, I., Strauch, C. M., & Monnier, V. M. (2011). Favored and disfavored pathways of protein crosslinking by glucose: Glucose lysine dimer (GLUCOLD) and crossline versus glucosepane. Amino Acids, 40(1), 167–181. https://doi.org/10.1007/s00726-010-0631-2

    Article  CAS  PubMed  Google Scholar 

  58. Goldin, A., Beckman, J. A., Schmidt, A. M., & Creager, M. A. (2006). Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation, 114(6), 597–605. https://doi.org/10.1161/CIRCULATIONAHA.106.621854

    Article  CAS  PubMed  Google Scholar 

  59. Nakamura, Y., Horii, Y., Nishino, T., Shiiki, H., Sakaguchi, Y., Kagoshima, T., … Bucala, R. (1993). Immunohistochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus. The American Journal of Pathology, 143(6), 1649–1656

  60. Sajithlal, G. B., Chithra, P., & Chandrakasan, G. (1998). Advanced glycation end products induce crosslinking of collagen in vitro. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1407(3), 215–224. https://doi.org/10.1016/S0925-4439(98)00043-X

    Article  CAS  Google Scholar 

  61. Valencia, J. V., Weldon, S. C., Quinn, D., Kiers, G. H., DeGroot, J., TeKoppele, J. M., & Hughes, T. E. (2004). Advanced glycation end product ligands for the receptor for advanced glycation end products: Biochemical characterization and formation kinetics. Analytical Biochemistry, 324(1), 68–78. https://doi.org/10.1016/j.ab.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  62. Bhatwadekar, A. D., & Ghole, V. S. (2005). Rapid method for the preparation of an AGE-BSA standard calibrator using thermal glycation. Journal of Clinical Laboratory Analysis, 19(1), 11–15. https://doi.org/10.1002/jcla.20048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Putta, D. S., & Kilari, E. (2015). A review on methods of estimation of advanced glycation end products. World Journal of Pharmaceutical Research, 4, 689–699

    CAS  Google Scholar 

  64. Bucala, R., Tracey, K. J., & Cerami, A. (1991). Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. Journal of Clinical Investigation, 87(2), 432–438

    Article  CAS  Google Scholar 

  65. Makita, Z., Vlassara, H., Cerami, A., & Bucala, R. (1992). Immunochemical detection of advanced glycosylation end products in vivo. Journal of Biological Chemistry, 267(8), 5133–5138

    Article  CAS  Google Scholar 

  66. Hori, M., Yagi, M., Nomoto, K., Ichijo, R., Shimode, A., Kitano, T., & Yonei, Y. (2012). Experimental models for advanced glycation end product formation using albumin, collagen, elastin, keratin and proteoglycan. undefined. Retrieved February 25, 2021, from http://paperExperimental-Models-for-Advanced-Gwww.lycation-End-and-Hori-Yagi/b53569a273bd657bfad19aa736b8993a9d5806e5

  67. Nagai, R., Matsumoto, K., Ling, X., Suzuki, H., Araki, T., & Horiuchi, S. (2000). Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes, 49(10), 1714–1723. https://doi.org/10.2337/diabetes.49.10.1714

    Article  CAS  PubMed  Google Scholar 

  68. Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., … Schmidt, A. M. (1999). N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. The Journal of Biological Chemistry, 274(44), 31740–31749

  69. Ikeda, K., Higashi, T., Sano, H., Jinnouchi, Y., Yoshida, M., Araki, T., … Horiuchi, S. (1996). Nε-(Carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry, 35(24), 8075–8083. https://doi.org/10.1021/bi9530550

  70. Kumar, V., Sulaj, A., Fleming, T., & Nawroth, P. P. (2018). Purification and characterization of the soluble form of the receptor for advanced glycation end-products (sRAGE): A novel fast, economical and convenient method. Experimental and Clinical Endocrinology & Diabetes, 126(3), 141–147. https://doi.org/10.1055/s-0043-110478

    Article  CAS  Google Scholar 

  71. Kumar, P. A., Kumar, M. S., & Reddy, G. B. (2007). Effect of glycation on alpha-crystallin structure and chaperone-like function. The Biochemical Journal, 408(2), 251–258. https://doi.org/10.1042/BJ20070989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., … Schmidt, A. M. (1999). N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. The Journal of Biological Chemistry, 274(44), 31740–31749. https://doi.org/10.1074/jbc.274.44.31740

  73. Ikeda, K., Higashi, T., Sano, H., Jinnouchi, Y., Yoshida, M., Araki, T., … Horiuchi, S. (1996). N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry, 35(24), 8075–8083. https://doi.org/10.1021/bi9530550

  74. Kumar, V., Sulaj, A., Fleming, T., & Nawroth, P. P. (2018). Purification and characterization of the soluble form of the receptor for advanced glycation end-products (sRAGE): A novel fast, economical and convenient method. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 126(3), 141–147. https://doi.org/10.1055/s-0043-110478

    Article  CAS  Google Scholar 

  75. Chen, Y., Akirav, E. M., Chen, W., Henegariu, O., Moser, B., Desai, D., … Herold, K. C. (2008). RAGE ligation affects T cell activation and controls T cell differentiation. Journal of Immunology (Baltimore, Md.: 1950), 181(6), 4272–4278. https://doi.org/10.4049/jimmunol.181.6.4272

  76. Ahmad, S., Siddiqui, Z., Rehman, S., Khan, M. Y., Khan, H., Khanum, S., … Saeed, M. (2017). A Glycation Angle to Look into the Diabetic Vasculopathy: Cause and Cure. Current Vascular Pharmacology, 15(4), 352–364. https://doi.org/10.2174/1570161115666170327162639

  77. Badenhorst, D., Maseko, M., Tsotetsi, O. J., Naidoo, A., Brooksbank, R., Norton, G. R., & Woodiwiss, A. J. (2003). Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovascular Research, 57(3), 632–641. https://doi.org/10.1016/s0008-6363(02)00733-2

    Article  CAS  PubMed  Google Scholar 

  78. Bucala, R., Tracey, K. J., & Cerami, A. (1991). Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. The Journal of Clinical Investigation, 87(2), 432–438. https://doi.org/10.1172/JCI115014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gilbertson, D. T., Liu, J., Xue, J. L., Louis, T. A., Solid, C. A., Ebben, J. P., & Collins, A. J. (2005). Projecting the number of patients with end-stage renal disease in the United States to the year 2015. Journal of the American Society of Nephrology: JASN, 16(12), 3736–3741. https://doi.org/10.1681/ASN.2005010112

    Article  PubMed  Google Scholar 

  80. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B. S., Uribarri, J., & Vlassara, H. (2004). Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association, 104(8), 1287–1291. https://doi.org/10.1016/j.jada.2004.05.214

    Article  CAS  PubMed  Google Scholar 

  81. Scheijen, J. L. J. M., Hanssen, N. M. J., van Greevenbroek, M. M., Van der Kallen, C. J., Feskens, E. J. M., Stehouwer, C. D. A., & Schalkwijk, C. G. (2018). Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clinical Nutrition (Edinburgh, Scotland), 37(3), 919–925. https://doi.org/10.1016/j.clnu.2017.03.019

    Article  CAS  Google Scholar 

  82. Raghav, A., Ahmad, J., & Alam, K. (2017). Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus. PLOS ONE, 12(5), e0176970. https://doi.org/10.1371/journal.pone.0176970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ledesma, M. D., Bonay, P., & Avila, J. (1995). Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. Journal of Neurochemistry, 65(4), 1658–1664. https://doi.org/10.1046/j.1471-4159.1995.65041658.x

    Article  CAS  PubMed  Google Scholar 

  84. Li, X. H., Lv, B. L., Xie, J. Z., Liu, J., Zhou, X. W., & Wang, J. Z. (2012). AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiology of Aging, 33(7), 1400–1410. https://doi.org/10.1016/j.neurobiolaging.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  85. Srikanth, V., Westcott, B., Forbes, J., Phan, T. G., Beare, R., Venn, A., … Münch, G. (2013). Methylglyoxal, cognitive function and cerebral atrophy in older people. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 68(1), 68–73. https://doi.org/10.1093/gerona/gls100

  86. Hansson, G. K., Robertson, A. K. L., & Söderberg-Nauclér, C. (2006). Inflammation and atherosclerosis. Annual Review of Pathology, 1, 297–329. https://doi.org/10.1146/annurev.pathol.1.110304.100100

    Article  CAS  PubMed  Google Scholar 

  87. Wei, Q., Ren, X., Jiang, Y., Jin, H., Liu, N., & Li, J. (2013). Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress. BMC Cardiovascular Disorders, 13(1), 13. https://doi.org/10.1186/1471-2261-13-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahmad, S., Khan, H., Siddiqui, Z., Khan, M. Y., Rehman, S., Shahab, U., … Moinuddin,  null. (2018). AGEs, RAGEs and s-RAGE; friend or foe for cancer. Seminars in Cancer Biology49, 44–55. https://doi.org/10.1016/j.semcancer.2017.07.001

  89. Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., … Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5), 1047–1059. https://doi.org/10.1016/j.cell.2013.07.042

  90. Kang, R., Tang, D., Lotze, M. T., & Zeh, H. J. (2012). AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy, 8(6), 989–991. https://doi.org/10.4161/auto.20258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kang, R., Hou, W., Zhang, Q., Chen, R., Lee, Y. J., Bartlett, D. L., … Zeh, H. J. (2014). RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death & Disease, 5, e1480. https://doi.org/10.1038/cddis.2014.445

  92. Duan, Z., Chen, G., Chen, L., Stolzenberg Solomon, R., Weinstein, S. J., Mannisto, S., … Jiao, L. (2014). Determinants of concentrations of N(ε)-carboxymethyl-lysine and soluble receptor for advanced glycation end products and their associations with risk of pancreatic cancer. International Journal of Molecular Epidemiology and Genetics, 5(3), 152–163

  93. Yaffe, K., Lindquist, K., Schwartz, A. V., Vitartas, C., Vittinghoff, E., Satterfield, S., … Harris, T. (2011). Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology, 77(14), 1351–1356. https://doi.org/10.1212/WNL.0b013e3182315a56

  94. Saruwatari, J., Yasui-Furukori, N., Kamihashi, R., Yoshimori, Y., Oniki, K., Tsuchimine, S., … Nakagawa, K. (2013). Possible associations between antioxidant enzyme polymorphisms and metabolic abnormalities in patients with schizophrenia. Neuropsychiatric Disease and Treatment, 9. https://doi.org/10.2147/ndt.s52585

  95. Arai, M., Yuzawa, H., Nohara, I., Ohnishi, T., Obata, N., Iwayama, Y., … Itokawa, M. (2010). Enhanced carbonyl stress in a subpopulation of schizophrenia. Archives of General Psychiatry, 67(6), 589–597. https://doi.org/10.1001/archgenpsychiatry.2010.62

  96. Steiner, J., Walter, M., Wunderlich, M. T., Bernstein, H.-G., Panteli, B., Brauner, M., … Bogerts, B. (2009). A New Pathophysiological Aspect of S100B in Schizophrenia: Potential Regulation of S100B by Its Scavenger Soluble RAGE. Biological Psychiatry, 65(12), 1107–1110. https://doi.org/10.1016/j.biopsych.2008.10.044

  97. Ciobica, A., Padurariu, M., Dobrin, I., Stefanescu, C., & Dobrin, R. (2011). Oxidative stress in schizophrenia - focusing on the main markers. Psychiatria Danubina, 23(3), 237–245

    CAS  PubMed  Google Scholar 

  98. Wu, J. Q., Kosten, T. R., & Zhang, X. Y. (2013). Free radicals, antioxidant defense systems, and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 46, 200–206. https://doi.org/10.1016/j.pnpbp.2013.02.015

    Article  CAS  Google Scholar 

  99. Yao, J. K., Leonard, S., & Reddy, R. (2006). Altered glutathione redox state in schizophrenia. Disease Markers, 22(1–2), 83–93. https://doi.org/10.1155/2006/248387

    Article  CAS  PubMed  Google Scholar 

  100. Yao, J. K., Reddy, R., McElhinny, L. G., & van Kammen, D. P. (1998). Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophrenia Research, 32(1), 1–8. https://doi.org/10.1016/s0920-9964(98)00030-9

    Article  CAS  PubMed  Google Scholar 

  101. Miyashita, M., Arai, M., Kobori, A., Ichikawa, T., Toriumi, K., Niizato, K., … Itokawa, M. (2014). Clinical features of schizophrenia with enhanced carbonyl stress. Schizophrenia Bulletin, 40(5), 1040–1046. https://doi.org/10.1093/schbul/sbt129

  102. Miyashita, M., Arai, M., Yuzawa, H., Niizato, K., Oshima, K., Kushima, I., … Itokawa, M. (2014). Replication of enhanced carbonyl stress in a subpopulation of schizophrenia. Psychiatry and Clinical Neurosciences, 68(1), 83–84. https://doi.org/10.1111/pcn.12081

  103. Lapolla, A., Traldi, P., & Fedele, D. (2005). Importance of measuring products of non-enzymatic glycation of proteins. Clinical Biochemistry, 38(2), 103–115. https://doi.org/10.1016/j.clinbiochem.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  104. Ashraf, J. M., Ahmad, S., Choi, I., Ahmad, N., Farhan, M., Tatyana, G., & Shahab, U. (2015). Recent advances in detection of AGEs: Immunochemical, bioanalytical and biochemical approaches. IUBMB life, 67(12), 897–913. https://doi.org/10.1002/iub.1450

    Article  CAS  PubMed  Google Scholar 

  105. Xu, Y. J., Wu, X. Q., Liu, W., Lin, X. H., Chen, J. W., & He, R. (2002). A convenient assay of glycoserum by nitroblue tetrazolium with iodoacetamide. Clinica Chimica Acta; International Journal of Clinical Chemistry, 325(1–2), 127–131. https://doi.org/10.1016/s0009-8981(02)00277-2

    Article  CAS  PubMed  Google Scholar 

  106. Karimi, J., Goodarzi, M. T., Tavilani, H., Khodadadi, I., & Amiri, I. (2011). Relationship between advanced glycation end products and increased lipid peroxidation in semen of diabetic men. Diabetes Research and Clinical Practice, 91(1), 61–66. https://doi.org/10.1016/j.diabres.2010.09.024

    Article  CAS  PubMed  Google Scholar 

  107. Vinson, J. A., & Howard, T. B. (1996). Inhibition of protein glycation and advanced glycation end products by ascorbic acid and other vitamins and nutrients. The Journal of Nutritional Biochemistry, 7(12), 659–663. https://doi.org/10.1016/S0955-2863(96)00128-3

    Article  CAS  Google Scholar 

  108. Makita, Z., Vlassara, H., Cerami, A., & Bucala, R. (1992). Immunochemical detection of advanced glycosylation end products in vivo. The Journal of Biological Chemistry, 267(8), 5133–5138

    Article  CAS  Google Scholar 

  109. Higashi, T., Sano, H., Saishoji, T., Ikeda, K., Jinnouchi, Y., Kanzaki, T., … Horiuchi, S. (1997). The Receptor for Advanced Glycation End Products Mediates the Chemotaxis of Rabbit Smooth Muscle Cells. Diabetes, 46(3), 463–472. https://doi.org/10.2337/diab.46.3.463

  110. Sajithlal, G. B., Chithra, P., & Chandrakasan, G. (1998). Advanced glycation end products induce crosslinking of collagen in vitro. Biochimica Et Biophysica Acta, 1407(3), 215–224. https://doi.org/10.1016/s0925-4439(98)00043-x

    Article  CAS  PubMed  Google Scholar 

  111. Hori, M., Yagi, M., Nomoto, K., Ichijo, R., Shimoda, A., Kitano, T., & Yonei, Y. (2012). Experimental models for advanced glycation end product formation using albumin, collagen, elastin, keratin and proteoglycan. Anti-Aging Medicine, 9, 125–134

    Google Scholar 

  112. Nagai, R., Mera, K., Nakajou, K., Fujiwara, Y., Iwao, Y., Imai, H., … Otagiri, M. (2007). The ligand activity of AGE-proteins to scavenger receptors is dependent on their rate of modification by AGEs. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1772(11), 1192–1198. https://doi.org/10.1016/j.bbadis.2007.09.001

  113. Koschinsky, T., He, C. J., Mitsuhashi, T., Bucala, R., Liu, C., Buenting, C., … Vlassara, H. (1997). Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6474–6479. https://doi.org/10.1073/pnas.94.12.6474

  114. Stogsdill, J. A., Stogsdill, M. P., Porter, J. L., Hancock, J. M., Robinson, A. B., & Reynolds, P. R. (2012). Embryonic overexpression of receptors for advanced glycation end-products by alveolar epithelium induces an imbalance between proliferation and apoptosis. American Journal of Respiratory Cell and Molecular Biology, 47(1), 60–66. https://doi.org/10.1165/rcmb.2011-0385OC

    Article  CAS  PubMed  Google Scholar 

  115. Yan, S. D., Schmidt, A. M., Anderson, G. M., Zhang, J., Brett, J., Zou, Y. S., … Stern, D. (1994). Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. The Journal of Biological Chemistry, 269(13), 9889–9897

  116. Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R., & Baynes, J. W. (1995). N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry, 34(34), 10872–10878. https://doi.org/10.1021/bi00034a021

    Article  CAS  PubMed  Google Scholar 

  117. Cai, W., Uribarri, J., Zhu, L., Chen, X., Swamy, S., Zhao, Z., … Vlassara, H. (2014). Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4940–4945. https://doi.org/10.1073/pnas.1316013111

  118. Nagaraj, R. H., Linetsky, M., & Stitt, A. W. (2012). The pathogenic role of Maillard reaction in the aging eye. Amino Acids, 42(4), 1205–1220. https://doi.org/10.1007/s00726-010-0778-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Human Resource Development, Government of India.

Funding

This study was funded by the Ministry of Education (previously known as "Ministry of Human Resource Development").

Author information

Authors and Affiliations

Authors

Contributions

Ajay Kumar Sahi: Conceptualization, writing (original draft preparation), formal analysis and investigation, and writing (review and editing).

Pooja Verma: Writing (original draft preparation), formal analysis and investigation, and writing (review and editing).

Neelima Varshney: Formal analysis and investigation and writing (review and editing).

Shravanya Gundu: Formal analysis and investigation and writing (review and editing).

Sanjeev Kumar Mahto: Supervision, project administration, reviewing and editing, project administration, and funding acquisition.

Corresponding author

Correspondence to Sanjeev Kumar Mahto.

Ethics declarations

Ethical Approval

The current manuscript is a review; therefore, ethical approval is not applicable here.

Consent to Participate

No human subjects, freely given samples were used in the preparation of this manuscript. (NA)

Consent to Publish

Consent to publish is not applicable (NA) in the present manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahi, A.K., Verma, P., Varshney, N. et al. Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Appl Biochem Biotechnol 194, 2831–2855 (2022). https://doi.org/10.1007/s12010-022-03860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03860-5

Keywords

Navigation