Skip to main content
Log in

Antinociceptive and Anti-inflammatory Effect of Corynoline in Different Nociceptive and Inflammatory Experimental Models

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pain is growing to be a massive health issue across the globe. It is reported that one in every five adults tends to suffer from pain worldwide each year, regardless of age and gender. Inflammation caused by tissue damage, chemical stimulus, and foreign substances is commonly associated with pain. Inflammatory pain is mainly caused by the direct effect of inflammatory mediators on particular classes of nociceptive neurons. In the current investigation, the antinociceptive and anti-inflammatory effect of corynoline, a phytochemical compound isolated from Corydalis bungeana Turcz., has been evaluated in experimental mice. The experimental mice were divided into 5 groups of 6 animals each. The first control group was fed with water. The second, third, and fourth groups received different doses of corynoline and the fifth group of mice received positive controls. Nociception was induced with the help of acetic acid, formalin, glutamate, capsaicin, hot plate, and tail immersion in mice whereas carrageenan was used to induce inflammation. The peritoneal cavity leukocyte infiltration and pro-inflammatory mediator generation were also analyzed to confirm the anti-inflammatory effect and the natural locomotor activity was determined using an open field test. Corynoline treatment significantly suppressed the paw licking, writhing in the abdominal region, and displayed high nociceptive inhibitory reaction in a dose-related manner. Additionally, corynoline significantly reduced the carrageenan-triggered paw edema and also reduced the levels of pro-inflammatory cytokines. Thus, the antinociceptive and anti-inflammatory activity of corynoline has been successfully established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Wang, J. (2019). Glial endocannabinoid system in pain modulation. International Journal of Neuroscience, 129(1), 94–100.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, H. L., Li, Y. X., Niu, Y. T., Zheng, J., Wu, J., Shi, G. J., Ma, L., Niu, Y., Sun, T., & Yu, J. Q. (2015). Observing anti-inflammatory and anti-nociceptive activities of glycyrrhizin through regulating COX-2 and pro-inflammatory cytokines expressions in mice. Inflammation, 38(6), 2269–2278.

    Article  CAS  PubMed  Google Scholar 

  3. Bektas, N., Nemutlu, D., Ulugbay, G., & Arslan, R. (2015). The role of muscarinic receptors in pain modulation. World J pharm med, 1(1), 40–49.

    Google Scholar 

  4. Ronchetti, S., Migliorati, G., & Delfino, D. V. (2017). Association of inflammatory mediators with pain perception. Biomedicine & Pharmacotherapy, 96, 1445–1452.

    Article  CAS  Google Scholar 

  5. Yang, C., Zhang, C., Wang, Z., Tang, Z., Kuang, H., & Kong, A. N. (2016). Corynoline isolated from Corydalis bungeana Turcz exhibits anti-inflammatory effects via modulation of Nfr2 and MAPKs. Molecules, 21(8), 975.

    Article  PubMed Central  Google Scholar 

  6. Cho, B. O., Ryu, H. W., So, Y., Lee, C. W., Jin, C. H., Yook, H. S., Jeong, Y. W., Park, J. C., & Jeong, I. Y. (2014). Anti-inflammatory effect of mangostenone F in lipopolysaccharide-stimulated RAW264. 7 macrophages by suppressing NF-κB and MAPK activation. Biomol Ther, 22(4), 288.

    Article  CAS  Google Scholar 

  7. Hartung, J. E., Eskew, O., Wong, T., Tchivileva, I. E., Oladosu, F. A., O’Buckley, S. C., & Nackley, A. G. (2015). Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation. Brain, behavior, and immunity, 50, 196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. García-Rayado, G., Navarro, M., & Lanas, A. (2018). NSAID induced gastrointestinal damage and designing GI-sparing NSAIDs. Expert review of clinical pharmacology, 11(10), 1031–1043.

    Article  PubMed  Google Scholar 

  9. Jaffal, S. M., Oran, S. A., & Alsalem, M. (2020). Anti-nociceptive effect of Arbutus andrachne L. methanolic leaf extract mediated by CB1, TRPV1 and PPARs in mouse pain models. Inflammopharmacology, 28(6), 1567–77.

    Article  CAS  PubMed  Google Scholar 

  10. de Cássia da Silveira, E Sá. R., Lima, T. C., de Nóbrega, F. R., de Brito, A. E. M., & de Sousa, D. P. (2017). Analgesic-like activity of essential oil constituents: An update. Int J Mol Sci, 18(12), E2392.

    Article  Google Scholar 

  11. Dong, Z. B., Zhang, Y. H., Zhao, B. J., Li, C., Tian, G., Niu, B., Qi, H., Feng, L., & Shao, J. G. (2015). Screening for anti-inflammatory components from Corydalis bungeana Turcz. based on macrophage binding combined with HPLC. BMC complementary and alternative medicine, 15(1), 1.

    Article  Google Scholar 

  12. Du, Y. X., Zhai, X. T., Zhu, F. X., & Wang, H. (2015). Study on UPLC Fingerprint of Corydalis bungeana. Zhongyaocai Journal of Chinese medicinal materials, 38(8), 1630–1633.

    CAS  PubMed  Google Scholar 

  13. Liu, Y., Song, M., Zhu, G., Xi, X., Li, K., Wu, C., & Huang, L. (2017). Corynoline attenuates LPS-induced acute lung injury in mice by activating Nrf2. International Immunopharmacology, 48, 96–101.

    Article  CAS  PubMed  Google Scholar 

  14. Ankier, S. I. (1974). New hot plate tests to quantify antinociceptive and narcotic antagonist activities. European Journal of Pharmacology, 27(1), 1–4.

    Article  CAS  PubMed  Google Scholar 

  15. Koster, R. (1959). Acetic acid for analgesic screening. InFed proc, 18, 412.

    Google Scholar 

  16. Beirith, A., Santos, A. R., & Calixto, J. B. (2002). Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain research, 924(2), 219–228.

    Article  CAS  PubMed  Google Scholar 

  17. Luiz, A. P., Moura, J. D., Meotti, F. C., Guginski, G., Guimaraes, C. L., Azevedo, M. S., Rodrigues, A. L., & Santos, A. R. (2007). Antinociceptive action of ethanolic extract obtained from roots of Humirianthera ampla Miers. Journal of Ethnopharmacology, 114(3), 355–363.

    Article  CAS  PubMed  Google Scholar 

  18. Gomes, N. M., Rezende, C. M., Fontes, S. P., Matheus, M. E., & Fernandes, P. D. (2007). Antinociceptive activity of Amazonian Copaiba oils. Journal of Ethnopharmacology, 109(3), 486–492.

    Article  PubMed  Google Scholar 

  19. Agrahari, A. K., Khaliquzzama, M., & Panda, S. K. (2010). Evaluation of analgesic activity of methanolic extract of Trapa natans l. var. Bispinosa roxb. Roots. Int J Curr Pharm Res, 1(1), 8–11.

    Google Scholar 

  20. De Mattos, E. S., Frederico, M. J., Colle, T. D., De Pieri, D. V., Peters, R. R., & Piovezan, A. P. (2007). Evaluation of antinociceptive activity of Casearia sylvestris and possible mechanism of action. Journal of Ethnopharmacology, 112(1), 1–6.

    Article  PubMed  Google Scholar 

  21. Passos, G. F., Fernandes, E. S., da Cunha, F. M., Ferreira, J., Pianowski, L. F., Campos, M. M., & Calixto, J. B. (2007). Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. Journal of Ethnopharmacology, 110(2), 323–333.

    Article  CAS  PubMed  Google Scholar 

  22. Vinegar, R., Truax, J. F., & Selph, J. L. (1973). Some quantitative temporal characteristics of carrageenin-induced pleurisy in the rat. Proceedings of the Society for Experimental Biology and Medicine, 143(3), 711–714.

    Article  CAS  PubMed  Google Scholar 

  23. Edwards, J. C., Sedgwick, A. D., & Willoughby, D. A. (1981). The formation of a structure with the features of synovial lining by subcutaneous injection of air: An in vivo tissue culture system. The Journal of Pathology, 134(2), 147–156.

    Article  CAS  PubMed  Google Scholar 

  24. Zachariou, V., & Carr, F. (2014). Nociception and pain: Lessons from optogenetics. Frontiers in Behavioral Neuroscience, 8, 69.

    PubMed  PubMed Central  Google Scholar 

  25. Weng, W., Wang, F., He, X., Zhou, K., Wu, X., & Wu, X. (2021). Protective effect of corynoline on the CFA induced rheumatoid arthritis via attenuation of oxidative and inflammatory mediators. Molecular and Cellular Biochemistry, 476(2), 831–839.

    Article  CAS  PubMed  Google Scholar 

  26. De Souza, M. M., Pereira, M. A., Ardenghi, J. V., Mora, T. C., Bresciani, L. F., Yunes, R. A., Delle Monache, F., & Cechinel-Filho, V. (2009). Filicene obtained from Adiantum cuneatum interacts with the cholinergic, dopaminergic, glutamatergic, GABAergic, and tachykinergic systems to exert antinociceptive effect in mice. Pharmacology, Biochemistry and Behavior, 93(1), 40–46.

    Article  PubMed  Google Scholar 

  27. Singh, G., Kaur, J., Kaur, M., Singh, P., & Bhatti, R. (2020). Anti-nociceptive and anti-inflammatory effect of imperatorin: Evidences for involvement of COX-2, iNOS, NFκB and inflammatory cytokines. International Journal of Neuroscience, 130(2), 176–185.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y., Samad, O. A., Zhang, L., Duan, B., Tong, Q., Lopes, C., Ji, R. R., Lowell, B. B., & Ma, Q. (2010). VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron, 68(3), 543–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lam, D. K., Sessle, B. J., Cairns, B. E., & Hu, J. W. (2005). Neural mechanisms of temporomandibular joint and masticatory muscle pain: A possible role for peripheral glutamate receptor mechanisms. Pain Research & Management, 10(3), 145–152.

    Article  Google Scholar 

  30. Xu, Q., Wang, Y., Guo, S., Shen, Z., Wang, Y., & Yang, L. (2016). Anti-inflammatory and analgesic MAPKs. Molecules, 21(8), 975.

    Article  Google Scholar 

  31. Sani, M. H., Zakaria, Z. A., Balan, T., Teh, L. K., Salleh, M. Z. (2012). Antinociceptive activity of methanol extract of Muntingia calabura leaves and the mechanisms of action involved. Evidence-Based Complementary and Alternative Medicine, 2012.

  32. Singh, G., Bhatti, R., Mannan, R., Singh, D., Kesavan, A., & Singh, P. (2019). Osthole ameliorates neurogenic and inflammatory hyperalgesia by modulation of iNOS, COX-2, and inflammatory cytokines in mice. Inflammopharmacology, 27(5), 949–960.

    Article  CAS  PubMed  Google Scholar 

  33. Tsai, D. S., Huang, M. H., Tsai, J. C., Chang, Y. S., Chiu, Y. J., Lin, Y. C., Wu, L. Y., & Peng, W. H. (2015). Analgesic and anti-inflammatory activities of Rosa taiwanensis nakai in mice. Journal of Medicinal Food, 18(5), 592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lam, D. K., Sessle, B. J., & Hu, J. W. (2009). Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents. Brain research, 1251, 130–139.

    Article  CAS  PubMed  Google Scholar 

  35. Santos, F. A., Jeferson, F. A., Santos, C. C., Silveira, E. R., & Rao, V. S. (2005). Antinociceptive effect of leaf essential oil from Croton sonderianus in mice. Life Sciences, 77(23), 2953–2963.

    Article  CAS  PubMed  Google Scholar 

  36. Afsar, T., Khan, M. R., Razak, S., Ullah, S., & Mirza, B. (2015). Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R Parker and its phytochemical analysis. BMC complementary and alternative medicine, 15(1), 1–2.

    Article  CAS  Google Scholar 

  37. Rosa, S. G., Brüning, C. A., Pesarico, A. P., de Souza, A. C., & Nogueira, C. W. (2018). Anti-inflammatory and antinociceptive effects of 2, 2-dipyridyl diselenide through reduction of inducible nitric oxide synthase, nuclear factor-kappa B and c-Jun N-terminal kinase phosphorylation levels in the mouse spinal cord. Journal of Trace Elements in Medicine and Biology, 48, 38–45.

    Article  CAS  PubMed  Google Scholar 

  38. Niu, X., Li, Y., Li, W., Hu, H., Yao, H., Li, H., & Mu, Q. (2014). The anti-inflammatory effects of Caragana tangutica ethyl acetate extract. Journal of Ethnopharmacology, 152(1), 99–105.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, C., Zhang, C., Wang, Z., Tang, Z., Kuang, H., & Kong, A. N. (2016). Corynoline isolated from Corydalis bungeana Turcz. exhibits anti-inflammatory effects via modulation of Nfr2 and Corydalis bungeana Turcz. attenuates LPS-induced inflammatory responses via the suppression of NF-κB signaling pathway in vitro and in vivo. J Ethnopharmacol, 194, 153–61.

    Article  PubMed  Google Scholar 

  40. Zhai, X. T., Chen, J. Q., Jiang, C. H., Song, J., Li, D. Y., Zhang, H., Jia, X. B., Tan, W., Wang, S. X., Yang, Y., & Zhu, F. X. (2014). Activity of aqueous extract of Flos populi. J Ethnopharmacol, 152(3), 540–5.

    Article  Google Scholar 

  41. Liu, B., Su, K., Wang, J., Wang, J., Xin, Z., Li, F., & Fu, Y. (2018). Corynoline exhibits anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells through activating Nrf2. Inflammation, 41(5), 1640–1647.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Zhou Yan.

Ethics declarations

Ethics Approval

Ethical statement for “Antinociceptive and anti-inflammatory effect of bioactive compound in different nociceptive and inflammatory experimental models”.

Issue No: BJH202178091

Consent to Participate

All authors have their consent to participate.

Consent to Publish

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, F., Yan, Z. Antinociceptive and Anti-inflammatory Effect of Corynoline in Different Nociceptive and Inflammatory Experimental Models. Appl Biochem Biotechnol 194, 4783–4799 (2022). https://doi.org/10.1007/s12010-022-03843-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03843-6

Keywords

Navigation