Skip to main content

Advertisement

Log in

Antinociceptive and anti-inflammatory effects of Cuphea aequipetala Cav (Lythraceae)

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Cuphea aequipetala Cav (Lythraceae) is an herb used in folk treatment for pain and inflammation. The aim of this study was to evaluate the antinociceptive and anti-inflammatory actions of an ethanol extract from the leaves and stem of Cuphea aequipetala (CAE). The antinociceptive actions of CAE (10–200 mg/kg p.o.) were assessed with the acetic acid-induced writhing, hot plate, and formalin tests. The possible mechanism of action of CAE was evaluated using inhibitors. The effects of CAE on motor coordination were assessed by the rotarod test. The in vitro anti-inflammatory actions of CAE were evaluated using LPS-stimulated primary murine macrophages, and the in vivo anti-inflammatory actions were assessed by the TPA-induced ear oedema and the carrageenan-induced paw oedema tests. The production of inflammatory mediators was estimated from both in vitro and in vivo assays. CAE showed antinociception (ED50 = 90 mg/kg) in the acetic acid test and in the second phase of the formalin test (ED50 = 158 mg/kg). Pretreatment with glibenclamide or L-NAME partially reversed the antinociception shown by the plant extract. CAE (50–200 mg/kg) did not affect motor coordination in mice. CAE increased the production of IL-10 in LPS-stimulated macrophages (EC50 = 10 pg/ml) and, in the carrageenan-induced paw oedema test (threefold increase). In conclusion, CAE induced antinociceptive effects without affecting motor coordination, probably due to the involvement of nitric oxide and ATP-sensitive K+ channels. CAE also exerts in vitro and in vivo anti-inflammatory effects by increasing the release of IL-10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar-Rodríguez S, Echeveste-Ramírez NL, López-Villafranco ME, Aguilar-Contreras A, Vega-Ávila E, Reyes-Chilpa R (2012) Ethnobotany, analytical micrograph of leaves and stems and phytochemistry of Cuphea aequipetala Cav. (Lythraceae): a contribution to the herbal pharmacopoeia of the United Mexican States (FHEUM). Bol Latinoam Caribe Plant Med Aromat 11(4):316–330

    Google Scholar 

  • Alonso-Castro AJ, Domínguez F, Zapata-Morales JR, Carranza-Álvarez C (2015) Plants used in the traditional medicine of Mesoamerica (Mexico and Central America) and the Caribbean for the treatment of obesity. J Ethnopharmacol 175:335–345

    Article  Google Scholar 

  • Arana-Argáez VE, Chan-Zapata I, Canul-Canche J, Fernández-Martín K, Martín-Quintal Z, Torres-Romero JC, Coral-Martínez TI, Lara-Riegos JC, Ramírez-Camacho MA (2017) Immunosuppresive effects of the methanolic extract of Chrysophyllum cainito leaves on macrophage functions. Afr J Tradit Complement Altern Med 14(1):179–186

    PubMed  Google Scholar 

  • Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Investig 118:413–420

    Article  CAS  Google Scholar 

  • BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M (2017) Anti-inflammatory potential of ellagic acid, gallic acid and Punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med 17(1):47

    Article  Google Scholar 

  • Carbone L (2011) Pain in laboratory animals: the ethical and regulatory imperatives. PLoS One 6(9):e21578

    Article  CAS  Google Scholar 

  • Carter RB (1991) Differentiating analgesic and non-analgesic drug activities on rat hot plate: effect of behavioral endpoint. Pain 47(2):211–220

    Article  CAS  Google Scholar 

  • Chernov HI, Wilson DE, Fowler F, Plummer AJ (1967) Non-specificity of the mouse writhing test. Arch Int Pharmacodyn Ther 167:171–178

    CAS  PubMed  Google Scholar 

  • Duque GA, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Google Scholar 

  • Fernandes ER, Santos AL, Arruda AM, Vasques-Pinto LD, Godinho RO, Torres LM, Lapa AJ, Souccar C (2002) Antinociceptive and anti-inflammatory activities of the aqueous extract and isolated Cuphea carthagenensis (Jacq.) JF Macbr. Rev Bras Farmacogn 12:55–56

    Article  Google Scholar 

  • Flamand N, Mancuso P, Serezani CH, Brock TG (2007) Leukotrienes: mediators that have been typecast as villains. Cell Mol Life Sci 64(19–20):2657–2670

    Article  CAS  Google Scholar 

  • Garcia-Lara B, Enciso-Donis I, Wrobel K, Wrobel K (2018) Determination of six priority phthalates and di(ethylhexyl) adipate in maize tortilla by gas chromatography-tandem mass spectrometry in multiple reaction monitoring mode. J Mex Chem Soc 62(2):270–281

    Article  Google Scholar 

  • Gyires K, Torma Z (1984) The use of the writhing test in mice for screening different types of analgesics. Arch Int Pharmacodyn Ther 267(1):131–140

    CAS  PubMed  Google Scholar 

  • Kelly A, Lynch A, Vereker E, Nolan Y, Queenan P, Whittaker E, O'Neill LA, Lynch MA (2001) The anti-inflammatory cytokine, interleukin (IL)-10, blocks the inhibitory effect of IL-1 beta on long term potentiation. A role for jnk. J Biol Chem 276(49):45564–45572

    Article  CAS  Google Scholar 

  • Kroes BH, van den Berg AJJ, Quarles van Ufford HC, van Dijk H, Labadie RP (1992) Anti-inflammatory activity of gallic acid. Planta Med 58(6):499–504

    Article  CAS  Google Scholar 

  • Liu KYP, Hu S, Chan BCL, Wat ECL, Lau CBS, Hon KL, Fung KP, Leung PC, Hui PCL, Lam CWK, Wong CK (2013) Anti-inflammatory and anti-allergic activities of Pentaherb Formula, Moutan Cortex (Danpi) and gallic acid. Molecules 18(3):2483–2500

    Article  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 263(1):136–146

    CAS  PubMed  Google Scholar 

  • Martínez-Bonfil BP, Pineda-Montero M, López-Laredo AR, Salcedo-Morales G, Evangelista-Lozano S, Trejo-Tapia G (2013) A propagation procedure for Cuphea aequipetala Cav. (Lythraceae) and antioxidant properties of wild and greenhouse-grown plants. Bol Latinoam Caribe Plant Med Aromat 12(1):1–14

    Google Scholar 

  • Murakawa M, Yamaoka K, Tanaka Y, Fukuda Y (2006) Involvement of tumor necrosis factor (TNF)-alpha in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin oedema in mice. Biochem Pharmacol 71(9):1331–1336

    Article  CAS  Google Scholar 

  • Murray CW, Porreca F, Cowan A (1988) Methodological refinements to the mouse paw formalin test. An animal model of tonic pain. J Pharmacol Methods 20(2):175–186

    Article  CAS  Google Scholar 

  • Palacios-Espinosa JF, Arroyo-García O, García-Valencia G, Linares E, Bye R, Romero I (2014) Evidence of the anti-Helicobacter pylori, gastroprotective and anti-inflammatory activities of Cuphea aequipetala infusion. J Ethnopharmacol 151(2):990–998

    Article  CAS  Google Scholar 

  • Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38(1–2):161–170

    Article  CAS  Google Scholar 

  • Ramírez-Atehortúa AM, Morales-Agudelo L, Osorio E, Lara-Guzmán OJ (2018) The traditional medicinal plants Cuphea calophylla, Tibouchina kingii, and Pseudelephantopus spiralis attenuate inflammatory and oxidative mediators. Evid Based Complement Alternat Med 2018 (Article id 1953726)

  • Santos AR, De Campos RO, Miguel OG, Cechinel-Filho V, Yunes RA, Calixto JB (1999) The involvement of K+ channels and Gi/o protein in the antinociceptive action of the gallic acid ethyl ester. Eur J Pharmacol 379(1):7–17

    Article  CAS  Google Scholar 

  • Santos FA, Jeferson FA, Santos CC, Silveira ER, Rao VSN (2005) Antinociceptive effect of leaf essential oil from Croton sonderianus in mice. Life Sci 77(23):2953–2963

    Article  CAS  Google Scholar 

  • Santucci L, Fiorucci S, Chiorean M, Brunori PM, Di Matteo FM, Sidoni A, Migliorati G, Morelli A (1996) Interleukin 10 reduces lethality and hepatic injury induced by lipopolysaccharide in galactosamine-sensitized mice. Gastroenterol 111(3):736–744

    Article  CAS  Google Scholar 

  • Sugishita E, Amagaya S, Ogihara V (1981) Antiinflammatory testing methods comparative evaluation of mice and rats. J Pharm Dyn 4(8):565–575

    Article  CAS  Google Scholar 

  • Trushin SA, Pennington KN, Carmona EM, Asin S, Savoy DN, Billadeau DD, Paya CV (2003) Protein kinase calpha (PKCalpha) acts upstream of PKCtheta to activate IkappaB kinase and NF-kappaB in T lymphocytes. Mol Cell Biol 23(19):7068–7081

    Article  CAS  Google Scholar 

  • Tsuda M, Suzuki T, Misawa M, Nagase H (1996) Involvement of the opioid system in the anxiolytic effect of diazepam in mice. Eur J Pharmacol 307(1):7–14

    Article  CAS  Google Scholar 

  • Uscanga-Palomeque AC, Zapata-Benavides P, Saavedra-Alonso S, Zamora-Ávila DE, Franco-Molina MA, Arellano-Rodríguez M, Manilla-Muñoz E, Martínez-Torres AC, Trejo-Ávila LM, Rodríguez-Padilla C (2019) Inhibitory effect of Cuphea aequipetala extracts on murine B16F10 melanoma in vitro and in vivo. Biomed Res Int 2019 (Article id:8560527)

  • Vega-Avila E, Aguilar RT, Estrada MJ, Ortega MLV, Ramos RR (2004) Cytotoxic activity of Cuphea aequipetala. Proc West Pharmacol Soc 47:129–133

    Google Scholar 

  • Villa-Ruano N, Zurita-Vásquez GG, Pacheco-Hernández Y, Betancourt-Jiménez MG, Cruz-Durán R, Duque-Bautista H (2013) Anti-lipase and antioxidant properties of 30 medicinal plants used in Oaxaca. México Biol Res 46(2):153–160

    Article  Google Scholar 

  • Waizel-Bucay J, Martinez-Porcayo G, Villarreal-Ortega ML, Alonso-Cortes D, Pliego-Castañeda A (2003) Estudio preliminar etnobotánico, fitoquímico de la actividad citotóxica y antimicrobiana de Cuphea aequipetala Cav. (Lythraceae). Polibotánica 15:99–108

    Google Scholar 

  • Zhu L, Gu PQ, Shen H (2019) Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis. Int Immunopharmacol 67:129–137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angel Josabad Alonso-Castro or Victor Arana-Argáez.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Castro, A.J., Arana-Argáez, V., Yáñez-Barrientos, E. et al. Antinociceptive and anti-inflammatory effects of Cuphea aequipetala Cav (Lythraceae). Inflammopharmacol 29, 295–306 (2021). https://doi.org/10.1007/s10787-020-00709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-020-00709-3

Keywords

Navigation