Skip to main content
Log in

Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers decorated with Ni/Co Particles via Oxidation

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nonenzymatic biosensors do not require enzyme immobilization nor face degradation problem. Hence, nonenzymatic biosensors have recently attracted growing attention due to the stability and reproducibility. Here, a comparative study was conducted to quantitatively evaluate the glucose sensing of pure/oxidized Ni, Co, and their bimetal nanostructures grown on electrospun carbon nanofibers (ECNFs) to provide a low-cost free-standing electrode. The prepared nanostructures exhibited sensitivity (from 66.28 to 610.6 μA mM−1 cm−2), linear range of 2–10 mM, limit of detection in the range of 1 mM, and the response time (< 5 s), besides outstanding selectivity and applicability for glucose detection in the human serum. Moreover, the oxidizable interfering species, such as ascorbic acid (AA), uric acid (UA), and dopamine (DA), did not cause interference. Co–C and Ni-C phase diagrams, solid-state diffusion phenomena, and rearrangement of dissolved C atoms after migration from metal particles were discussed. This study undoubtedly provides new prospects on the nonenzymatic biosensing performance of mono-metal, bimetal, and oxide compounds of Ni and Co elements, which could be quite helpful for the fabrication of biomolecules detecting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5.
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39, 1747–1763.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, C., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tan, Y., & Yao, S. (2013). Recent advances in electrochemical glucose biosensors: A review. RSC Advances, 3, 4473–4491.

    Article  CAS  Google Scholar 

  3. Wilson, R., & Turner, A. P. F. (1992). Glucose oxidase: An ideal enzyme. Biosensors & Bioelectronics, 7, 165–185.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Luo, L., Zhang, Z., Ding, Y., Liu, S., Deng, D., Zhao, H., & Chen, Y. (2014). Synthesis of MnCo 2 O 4 nanofibers by electrospinning and calcination: application for a highly sensitive non-enzymatic glucose sensor. Journal of Materials Chemistry B., 2, 529–535.

    Article  CAS  PubMed  Google Scholar 

  5. Hsu, Y.-W., Hsu, T.-K., Sun, C.-L., Nien, Y.-T., Pu, N.-W., & Ger, M.-D. (2012). Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochimica Acta, 82, 152–157.

    Article  CAS  Google Scholar 

  6. Zhang, J., Ma, J., Zhang, S., Wang, W., & Chen, Z. (2015). A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sensors and Actuators B: Chemical., 211, 385–391. https://doi.org/10.1016/j.snb.2015.01.100

    Article  CAS  Google Scholar 

  7. Lu, N., Shao, C., Li, X., Miao, F., Wang, K., & Liu, Y. (2016). CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceramics International, 42, 11285–11293. https://doi.org/10.1016/j.ceramint.2016.04.046

    Article  CAS  Google Scholar 

  8. Hsin, Y. L., Hwang, K. C., & Yeh, C.-T. (2007). Poly (vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. Journal of the American Chemical Society, 129, 9999–10010.

    Article  CAS  PubMed  Google Scholar 

  9. Guo, Q., Liu, D., Zhang, X., Li, L., Hou, H., Niwa, O., & You, T. (2014). Pd–Ni alloy nanoparticle/carbon nanofiber composites: Preparation, structure, and superior electrocatalytic properties for sugar analysis. Analytical Chemistry, 86, 5898–5905.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J.-G., Yang, Y., Huang, Z.-H., & Kang, F. (2011). Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochimica Acta, 56, 9240–9247.

    Article  CAS  Google Scholar 

  11. Steigerwalt, E. S., Deluga, G. A., Cliffel, D. E., & Lukehart, C. M. (2001). A Pt- Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. The Journal of Physical Chemistry B, 105, 8097–8101.

    Article  CAS  Google Scholar 

  12. Huang, J., Wang, D., Hou, H., & You, T. (2008). Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Advanced Functional Materials, 18, 441–448.

    Article  CAS  Google Scholar 

  13. Cui, K., Song, Y., Guo, Q., Xu, F., Zhang, Y., Shi, Y., Wang, L., Hou, H., & Li, Z. (2011). Architecture of electrospun carbon nanofibers–hydroxyapatite composite and its application act as a platform in biosensing. Sensors and Actuators B: Chemical., 160, 435–440.

    Article  CAS  Google Scholar 

  14. Nataraj, S. K., Yang, K. S., & Aminabhavi, T. M. (2012). Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress in Polymer Science, 37, 487–513.

    Article  CAS  Google Scholar 

  15. Park, S.-J., & Im, S.-H. (2008). Electrochemical behaviors of PAN/Ag-based carbon nanofibers by electrospinning. Bulletin of the Korean Chemical Society, 29, 777–781.

    Article  CAS  Google Scholar 

  16. Hu, G., Zhou, Z., Guo, Y., Hou, H., & Shao, S. (2010). Electrospun rhodium nanoparticle-loaded carbon nanofibers for highly selective amperometric sensing of hydrazine. Electrochemistry Communications, 12, 422–426.

    Article  CAS  Google Scholar 

  17. Weisweiler, W., Subramanian, N., & Terwiesch, B. (1971). Catalytic influence of metal melts on the graphitization of monolithic glasslike carbon. Carbon. New York, 9, 755–761.

    CAS  Google Scholar 

  18. Zhou, H., Yu, Q., Peng, Q., Wang, H., Chen, J., & Kuang, Y. (2008). Catalytic graphitization of carbon fibers with electrodeposited Ni–B alloy coating. Materials Chemistry and Physics, 110, 434–439.

    Article  CAS  Google Scholar 

  19. Vashist, S. K., Zheng, D., Al-Rubeaan, K., Luong, J. H. T., & Sheu, F.-S. (2011). Technology behind commercial devices for blood glucose monitoring in diabetes management: A review. Analytica Chimica Acta, 703, 124–136.

    Article  CAS  PubMed  Google Scholar 

  20. Association, A. D., et al. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37, S81–S90.

    Article  Google Scholar 

  21. Sedighi, A., Montazer, M., & Mazinani, S. (2019). Synthesis of wearable and flexible NiP0. 1-SnOx/PANI/CuO/cotton towards a non-enzymatic glucose sensor. Biosensors & Bioelectronics, 135, 192–199.

    Article  CAS  Google Scholar 

  22. Li, Y., Song, Y.-Y., Yang, C., & Xia, X.-H. (2007). Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications, 9, 981–988.

    Article  CAS  Google Scholar 

  23. Liu, Y., Teng, H., Hou, H., & You, T. (2009). Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosensors & Bioelectronics, 24, 3329–3334. https://doi.org/10.1016/j.bios.2009.04.032

    Article  CAS  Google Scholar 

  24. Luo, L., Li, F., Zhu, L., Ding, Y., Zhang, Z., Deng, D., & Lu, B. (2013). Nonenzymatic glucose sensor based on nickel (II) oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 102, 307–311.

    Article  CAS  PubMed  Google Scholar 

  25. Ding, Y., Wang, Y., Su, L., Bellagamba, M., Zhang, H., & Lei, Y. (2010). Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors & Bioelectronics, 26, 542–548.

    Article  CAS  Google Scholar 

  26. Liu, L., Wang, Z., Yang, J., Liu, G., Li, J., Guo, L., Chen, S., & Guo, Q. (2018). NiCo2O4 nanoneedle-decorated electrospun carbon nanofiber nanohybrids for sensitive non-enzymatic glucose sensors. Sensors and Actuators B: Chemical., 258, 920–928.

    Article  CAS  Google Scholar 

  27. Rajaji, U., Ganesh, P.-S., Chen, S.-M., Govindasamy, M., Kim, S.-Y., Alshgari, R. A., & Shimoga, G. (2021). Deep eutectic solvents synthesis of perovskite type cerium aluminate embedded carbon nitride catalyst: High-sensitive amperometric platform for sensing of glucose in biological fluids. Journal of Industrial and Engineering Chemistry, 102, 312–320.

    Article  CAS  Google Scholar 

  28. Mohammadi, M. A., Tabar, F. A., Mohammadpour-Haratbar, A., Bazargan, A. M., Mazinani, S., Keihan, A. H., & Sharif, F. (2021). Preparation and evaluation of electrospun carbon nanofibers infused by metal nanoparticles for supercapacitor electrodes application. Synth. Met., 274, 116706.

    Article  CAS  Google Scholar 

  29. Guo, S., Dong, S., & Wang, E. (2010). Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano, 4, 547–555.

    Article  CAS  PubMed  Google Scholar 

  30. Sakthivel, K., Mani, G., Chen, S.-M., Lin, S.-H., Muthumariappan, A., & Mani, V. (2018). A novel synthesis of non-aggregated spinel nickel ferrite nanosheets for developing non-enzymatic reactive oxygen species sensor in biological samples. Journal of Electroanalytical Chemistry, 820, 161–167.

    Article  CAS  Google Scholar 

  31. Sharma, R. K., & Ghose, R. (2015). Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method. Superlattices and Microstructures, 80, 169–180.

    Article  CAS  Google Scholar 

  32. Niinisto, L., Utriainen, M., Kroger-Laukkanen, M., & Johansson, L. S. (2000). Studies of metallic thin film growth in an atomic layer epitaxy reactor using M (acac) sub 2(M= Ni, Cu, Pt) precursors. Applied Surface Science, 157, 151–158.

    Article  Google Scholar 

  33. Wu, M., Wang, Q., Li, K., Wu, Y., & Liu, H. (2012). Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polymer Degradation and Stability, 97, 1511–1519.

    Article  CAS  Google Scholar 

  34. Li, L., Zhou, T., Sun, G., Li, Z., Yang, W., Jia, J., & Yang, G. (2015). Ultrasensitive electrospun nickel-doped carbon nanofibers electrode for sensing paracetamol and glucose. Electrochimica Acta, 152, 31–37. https://doi.org/10.1016/j.electacta.2014.11.048

    Article  CAS  Google Scholar 

  35. An, C., Wang, Y., Xu, Y., Wang, Y., Huang, Y., Jiao, L., & Yuan, H. (2014). In situ preparation of 1D Co@ C composite nanorods as negative materials for alkaline secondary batteries. ACS Applied Materials & Interfaces, 6, 3863–3869.

    Article  CAS  Google Scholar 

  36. Zhang, D.-E., Ni, X.-M., Zhang, X.-J., & Zheng, H.-G. (2006). Synthesis and characterization of Ni–Co needle-like alloys in water-in-oil microemulsion. Journal of Magnetism and Magnetic Materials, 302, 290–293.

    Article  CAS  Google Scholar 

  37. Kim, C., Park, S.-H., Cho, J.-I., Lee, D.-Y., Park, T.-J., Lee, W.-J., & Yang, K.-S. (2004). Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. Journal of Raman Spectroscopy, 35, 928–933.

    Article  CAS  Google Scholar 

  38. Wang, Y., Serrano, S., & Santiago-Avilés, J. J. (2003). Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic Metals, 138, 423–427.

    Article  CAS  Google Scholar 

  39. Van Nguyen, T. D., Sufian, S., Mansor, N., & Yahya, N. (2014). Characterization of carbon nanofibers treated with thermal nitrogen as a catalyst support using point-of-zero charge analysis. Journal of Nanomaterials., 2014, 1–6.

    Article  CAS  Google Scholar 

  40. Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Magalhaes-Paniago, R., & Pimenta, M. A. (2006). General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Applied Physics Letters, 88, 163106.

    Article  CAS  Google Scholar 

  41. Kim, T., Lee, J., & Lee, K.-H. (2016). Full graphitization of amorphous carbon by microwave heating. RSC Advances, 6, 24667–24674.

    Article  CAS  Google Scholar 

  42. Li, D., Li, G., Lv, P., Ullah, N., Wang, C., Wang, Q., Zhang, X., & Wei, Q. (2015). Preparation of a graphene-loaded carbon nanofiber composite with enhanced graphitization and conductivity for biosensing applications. RSC Advances, 5, 30602–30609.

    Article  CAS  Google Scholar 

  43. Oya, A., & Otani, S. (1979). Catalytic graphitization of carbons by various metals. Carbon, New York, 17, 131–137.

    Article  CAS  Google Scholar 

  44. Oya, A., & Marsh, H. (1982). Phenomena of catalytic graphitization. Journal of Materials Science, 17, 309–322.

    Article  CAS  Google Scholar 

  45. Barakat, N. A. M., Kim, B., Park, S. J., Jo, Y., Jung, M.-H., & Kim, H. Y. (2009). Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. Journal of Materials Chemistry, 19, 7371–7378.

    Article  CAS  Google Scholar 

  46. Wang, Y., Serrano, S., & Santiago-Aviles, J. J. (2002). Conductivity measurement of electrospun PAN-based carbon nanofiber. Journal of Material Science Letters, 21, 1055–1057.

    Article  CAS  Google Scholar 

  47. Ryu, W.-H., Shin, J., Jung, J.-W., & Kim, I.-D. (2013). Cobalt (II) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. Journal of Materials Chemistry A., 1, 3239–3243.

    Article  CAS  Google Scholar 

  48. Li, Y., Xie, M., Zhang, X., Liu, Q., Lin, D., Xu, C., Xie, F., & Sun, X. (2019). Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. Sensors and Actuators B: Chemical., 278, 126–132.

    Article  CAS  Google Scholar 

  49. Salimi, A., & Roushani, M. (2005). Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode. Electrochemistry Communications, 7, 879–887.

    Article  CAS  Google Scholar 

  50. Zhang, L., Yuan, S., & Lu, X. (2014). Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel (II) hydroxide nanoplates and carbon nanofibers. Microchimica Acta, 181, 365–372.

    Article  CAS  Google Scholar 

  51. Tian, H., Jia, M., Zhang, M., & Hu, J. (2013). Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode. Electrochimica Acta, 96, 285–290.

    Article  CAS  Google Scholar 

  52. Xu, J., Li, F., Wang, D., Nawaz, M. H., An, Q., Han, D., & Niu, L. (2019). Co3O4 nanostructures on flexible carbon cloth for crystal plane effect of nonenzymatic electrocatalysis for glucose. Biosensors & Bioelectronics, 123, 25–29.

    Article  CAS  Google Scholar 

  53. Kung, C.-W., Lin, C.-Y., Lai, Y.-H., Vittal, R., & Ho, K.-C. (2011). Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosensors & Bioelectronics, 27, 125–131.

    Article  CAS  Google Scholar 

  54. Park, S., Boo, H., & Chung, T. D. (2006). Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 556, 46–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Mazinani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

• Introducing well-stablished method for synthesis nanocomposites of electrospun carbon nanofibers decorated with pure/oxidized metal nanoparticles.

• Designing free-stand nonenzymatic electrodes of electrospun carbon nanofibers with no need to binders and glassy carbon electrode.

• Obtaining biosensors of high sensitivity and wide linear range towards the oxidation of glucose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5914 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour-Haratbar, A., Mazinani, S., Sharif, F. et al. Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers decorated with Ni/Co Particles via Oxidation. Appl Biochem Biotechnol 194, 2542–2564 (2022). https://doi.org/10.1007/s12010-022-03833-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03833-8

Keywords

Navigation