Skip to main content

Advertisement

Log in

Unveiling the Solubilization of Potassium Mineral Rocks in Organic Acids for Application as K-Fertilizer

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Organic acids produced by soil microorganisms can be useful to promote the release of potassium (K) from potassium mineral rocks (KR), but the complexity of low reactivity minerals limits K solubilization and their use as fertilizer. Here, we investigate the ways that different organic acids (gluconic, oxalic, and citric) can affect the solubilization of potassium minerals, in order to propose process strategies to improve their solubility. For this, evaluations were performed using the model minerals KRpolyhalite (sedimentary mineral), KRfeldspar (igneous mineral), and KCl (commercial fertilizer). For KCl and KRpolyhalite, complete solubilization was achieved using all the organic acids, while for KRfeldspar, the highest K+ solubilization (34.86 mg L−1) was achieved with oxalic acid. The solubility of KRfeldspar was further investigated under submerged cultivation with the filamentous fungus Aspergillus niger, as well as after a mechanochemical grinding treatment. The biotechnological route resulted in solubilized K up to 63.2 mg L−1. The mechanochemical route, on the other hand, increased the release of K by about 8.6 times (993 mg L−1) compared to the natural mineral, due to the greater fragmentation of the particles after the treatment (with a surface area about 2.5 times higher than for the in natura KRfeldspar). These findings demonstrated the potential of applying biotechnological and mechanochemical routes with organic acids to improve the solubilization of K present in low reactivity mineral rocks, indicating the possible use of these minerals in more sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be available upon request.

Code Availability

Not applicable.

References

  1. Matias, P. C., Mattiello, E. M., Santos, W. O., Badel, J. L., & Alvarez, V. V. H. (2019). Solubilization of a K-silicate rock by Acidithiobacillus thiooxidans. Minerals Engineering, 132(July 2018), 69–75. https://doi.org/10.1016/j.mineng.2018.11.050

    Article  CAS  Google Scholar 

  2. Xue, X., Zhang, L., Peng, Y., Li, P., & Yu, J. (2018). Effects of mineral structure and microenvironment on K release from potassium aluminosilicate minerals by Cenococcum geophilum fr. Geomicrobiology Journal, 36(1), 11–18.

    Article  Google Scholar 

  3. Mendes, G. D. O., Luiz, A., & Freitas, M. D. (2014). Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Annales de Microbiologie, 64, 239–249. https://doi.org/10.1007/s13213-013-0656-3

    Article  CAS  Google Scholar 

  4. Meena, V. S., Maurya, B. R., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research, 169(5–6), 337–347. https://doi.org/10.1016/j.micres.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Masood, S., and Bano, A. (2016). in Potassium Solubilizing Microorganisms for Sustainable Agriculture: Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganism (Meena V., Maurya B., Verma J., Meena R., eds.), Springer, Nova Delhi, pp. 137–147. https://doi.org/10.1007/978-81-322-2776-2_10

  6. Vassilev, N., Mendes, G., Costa, M., & Vassileva, M. (2014). Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiology Journal, 31(9), 751–763. https://doi.org/10.1080/01490451.2013.822615

    Article  CAS  Google Scholar 

  7. Bakhshandeh, E., Pirdashti, H., & Lendeh, K. S. (2017). Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering, 103, 164–169. https://doi.org/10.1016/j.ecoleng.2017.03.008

    Article  Google Scholar 

  8. Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., & Meena, H. N. (2019). Perspectives of potassium solubilizing microbes in sustainable food production system a review. Applied Soil Ecology, 133(October 018), 146–159. https://doi.org/10.1016/j.apsoil.2018.09.012

    Article  Google Scholar 

  9. Klaic, R., Plotegher, F., Ribeiro, C., Zangirolami, T. C. C., & Farinas, C. S. S. (2017). A novel combined mechanical-biological approach to improve rock phosphate solubilization. International Journal of Mineral Processing, 161, 50–58. https://doi.org/10.1016/j.minpro.2017.02.009

    Article  CAS  Google Scholar 

  10. Klaic, R., Plotegher, F., Ribeiro, C., Zangirolami, T. C., & Farinas, C. S. (2018). A fed-batch strategy integrated with mechanical activation improves the solubilization of phosphate rock by Aspergillus niger. ACS Sustain. Chem. Eng., 6(9), 11326–11334. https://doi.org/10.1021/acssuschemeng.8b00885

    Article  CAS  Google Scholar 

  11. Baláž, P. (2003). Mechanical activation in hydrometallurgy. International Journal of Mineral Processing, 72(1–4), 341–354. https://doi.org/10.1016/S0301-7516(03)00109-1

    Article  CAS  Google Scholar 

  12. Skorina, T., & Allanore, A. (2015). Aqueous alteration of potassium-bearing aluminosilicate minerals: From mechanism to processing. Green Chemistry, 17(4), 2123–2136. https://doi.org/10.1039/c4gc02084g

    Article  CAS  Google Scholar 

  13. Shanware, A. S., Kalkar, S. A., & Trivedi, M. M. (2014). Potassium solublisers : Occurrence, mechanism and their role as competent biofertilizers. Int. J. Curr. Microbiol. Appl. Sci., 3(9), 622–629.

    Google Scholar 

  14. Meena, V. S., Bahadur, I., Maurya, B. R., Kumar, A., Meena, R. K., Meena, S. K., and Verma, J. P. (2016). in Potassium Solubilizing Microorganisms for Sustainable Agriculture: Potassium-solubilizing microorganisms in Evergreen Agriculture: an overview (Meena V., Maurya B., Verma J., Meena R., eds.), Springer, Nova Delhi, pp. 1–20. https://doi.org/10.1007/978-81-322-2776-2_10

  15. Jaiswal D.K., Verma J.P., Prakash S., Meena V.S., Meena R.S. (2016). in Potassium Solubilizing Microorganisms for Sustainable Agriculture: Potassium as an Important Plant Nutrient in Sustainable Agriculture: A State of the Art (Meena V., Maurya B., Verma J., Meena R., eds.), Springer, Nova Delhi, pp. 21–29. https://doi.org/10.1007/978-81-322-2776-2_2

  16. Basak, B. B., Sarkar, B., Biswas, D. R., Sarkar, S., Sanderson, P., and Naidu, R. (2017). in Advances Agronomy, vol. 141: Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities (Sparks, D. L., ed.), Academic Press Burlington, pp.115-145. https://doi.org/10.1016/bs.agron.2016.10.016

  17. Stamford, N. P., Andrade, I. P., da Silva, S., Lira Junior, M. A., de Rosália e Silva Santos, C. E., Santiago de Freitas, A. D., and van Straaten, P. (2011). Nutrient uptake by grape in a Brazilian soil affected by rock biofertilizer.J. Soil Sci. Plant Nutr., 11(4), 79–88https://doi.org/10.4067/S0718-95162011000400006

  18. Zörb, C., Senbayram, M., & Peiter, E. (2014). Potassium in agriculture - status and perspectives. Journal of Plant Physiology, 171(9), 656–669. https://doi.org/10.1016/j.jplph.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  19. Basak B.B., Sarkar B. (2017). in Adaptive Soil Management: From Theory to Practices: Scope of Natural Sources of Potassium in Sustainable Agriculture (Rakshit A., Abhilash P., Singh H., Ghosh S., eds.). Springer, Singapore, pp. 247-259. https://doi.org/10.1007/978-981-10-3638-5_12

  20. Singh, B., Cattle, S. R., & Field, D. J. (2014). Edaphic Soil Science Introduction to. Encycl Agric Food Syst, 3(4), 35–58. https://doi.org/10.1016/B978-0-444-52512-3.00092-9

    Article  Google Scholar 

  21. Basak, B.B., Sarkar, B. & Naidu, R. (2021). Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environ Geochem Health 43, 3273–3286. https://doi.org/10.1007/s10653-020-00677-1

  22. Boldrin, K. V. F., de Paiva, P. D. O., Boldrin, P. F., FurtiniNeto, A. E., & Almeida, B. R. (2019). Alternative sources of potassium in the growth of calla lily. Sci. Hortic. (Amsterdam), 255(June 018), 96–102. https://doi.org/10.1016/j.scienta.2019.04.008

    Article  CAS  Google Scholar 

  23. Bortoletto-Santos, R., Ribeiro, C., & Polito, W. L. (2016). Controlled release of nitrogen-source fertilizers by natural-oil-based poly(urethane) coatings: The kinetic aspects of urea release. Journal of Applied Polymer Science, 133(33), 1–8. https://doi.org/10.1002/app.43790

    Article  CAS  Google Scholar 

  24. Aleksandrov, V. G., Blagodyr, R. N., & Il’ev, I. P. (1967). Phosphorus acid isolation from apatite produced by silicate bacteria. Mikrobiologicheskii Zhurnal, 29(2), 111–114.

    CAS  Google Scholar 

  25. Pati, S., Sarkar, T., Sheikh, H. I., Bharadwaj, K. K., Mohapatra, P. K., Chatterji, A., & Nelson, B. R. (2021). γ-irradiated chitosan from Carcinoscorpius rotundicauda (Latreille, 1802) improves the shelf life of refrigerated aquatic products. Frontiers in Marine Science, 8(May), 1–12. https://doi.org/10.3389/fmars.2021.664961

    Article  Google Scholar 

  26. Xu, H., Guo, X., & Bai, J. (2017). Thermal behavior of polyhalite: A high-temperature synchrotron XRD study. Physics and Chemistry of Minerals, 44(2), 125–135. https://doi.org/10.1007/s00269-016-0842-5

    Article  CAS  Google Scholar 

  27. Pati, S., Chatterji, A., Dash, B. P., Nelson, B. R., Sarkar, T., Shahimi, S., & Acharya, D. (2020). Structural characterization and antioxidant potential of chitosan by γ-irradiation from the carapace of horseshoe crab. Polymers (Basel), 12(10), 1–14. https://doi.org/10.3390/polym12102361

    Article  CAS  Google Scholar 

  28. Huang, P. M., & Wang, M. K. (2005). Minerals Primary In. Encycl Soils Environ, 4, 500–510.

    Article  Google Scholar 

  29. Bindi, L. (2005). Reinvestigation of polyhalite, K2Ca2Mg(SO 4)4·2H2O. Acta Crystallogr Sect E Struct Reports Online, 61(8), 135–136. https://doi.org/10.1107/S1600536805020507

    Article  CAS  Google Scholar 

  30. Schlatti, M., Sahl, K., Zemann, A., & Zemann, J. (1970). Die Kristallstruktur des Polyhalits K2Ca2Mg[SO4]42H2O. TMPM Tschermaks Mineral und Petrogr Mitteilungen, 14(2), 75–86. https://doi.org/10.1007/BF01157309

    Article  CAS  Google Scholar 

  31. Yadav B.K., Sidhu A.S. (2016). in Potassium Solubilizing Microorganisms for Sustainable Agriculture: Dynamics of Potassium and Their Bioavailability for Plant Nutrition (Meena V., Maurya B., Verma J., Meena R., eds.), Springer, Nova Delhi, pp. 187-201. https://doi.org/10.1007/978-81-322-2776-2_14

  32. Finch, H. J. S., Samuel, A. M., & Lane, G. P. F. (2014). in Lockhart & Wiseman’s Crop Husbandry Including Grassland, 9th ed: Fertilisers and manures (Finch, H. J. S., Samuel, A. M., Lane, G. P. F., eds.), Woodhead Publishing, Sawston, pp. 63–91. https://doi.org/10.1533/9781782423928.1.63

  33. Yermiyahu, U., Zipori, I., Faingold, I., Yusopov, L., Faust, N., & Bar-Tal, A. (2017). Polyhalite as a multi nutrient fertilizer-potassium, magnesium, calcium and sulfate. Isr. J. Plant Sci., 64(3–4), 145–157. https://doi.org/10.1163/22238980-06401001

    Article  Google Scholar 

  34. Bruice, P. (2006). Organic Chemistry. Org. Chem. 5th (5th ed.). Pearson Education Inc. publishing as Prentice Hall.

    Google Scholar 

  35. de Mendes, G., Murta, H. M., Valadares, R. V., da Silveira, W. B., da Silva, I. R., & Costa, M. D. (2020). Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Minerals Engineering, 155(May), 106458. https://doi.org/10.1016/j.mineng.2020.106458

    Article  CAS  Google Scholar 

  36. Lide, D. R. (2004). CRC Handbook of Chemistry and Physics, 84th ed., CRC Press, Boca Raton.

  37. Velizarov, S., & Beschkov, V. (1998). Biotransformation of glucose to free gluconic acid by Gluconobacter oxydans: Substrate and product inhibition situations. Process Biochemistry, 33(5), 527–534. https://doi.org/10.1016/S0032-9592(98)00000-4

    Article  CAS  Google Scholar 

  38. Ramos-Padrón, E., Bordenave, S., Lin, S., Bhaskar, I. M., Dong, X., Sensen, C. W., & Gieg, L. M. (2011). Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environmental Science and Technology, 45(2), 439–446. https://doi.org/10.1021/es1028487

    Article  CAS  PubMed  Google Scholar 

  39. Hannig, C., Hamkens, A., Becker, K., Attin, R., & Attin, T. (2005). Erosive effects of different acids on bovine enamel : Release of calcium and phosphate in vitro. Archives of Oral Biology, 50, 541–552. https://doi.org/10.1016/j.archoralbio.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  40. Lodi, L. A., Klaic, R., Ribeiro, C., & Farinas, C. S. (2021). A green K-fertilizer using mechanical activation to improve the solubilization of a low-reactivity potassium mineral by Aspergillus niger. Bioresour. Technol. Reports, 15(March), 100711. https://doi.org/10.1016/j.biteb.2021.100711

    Article  Google Scholar 

  41. Yang, L., Lübeck, M., & Lübeck, P. S. (2017). Aspergillus as a versatile cell factory for organic acid production. Fungal Biology Reviews, 31(1), 33–49. https://doi.org/10.1016/j.fbr.2016.11.001

    Article  Google Scholar 

  42. Lian, B., Wang, B., Pan, M., Liu, C., & Teng, H. H. (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72(1), 87–98. https://doi.org/10.1016/j.gca.2007.10.005

    Article  CAS  Google Scholar 

  43. Sauer, M., Porro, D., Mattanovich, D., & Branduardi, P. (2008). Microbial production of organic acids: Expanding the markets. Trends in Biotechnology, 26(2), 100–108. https://doi.org/10.1016/j.tibtech.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  44. Singh, Y. P., Tanvar, H., Kumar, G., & Dhawan, N. (2019). Investigation of planetary ball milling of sericite for potash recovery. Powder Technology, 351, 115–121. https://doi.org/10.1016/j.powtec.2019.04.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Agronano Network (Embrapa Research Network), the Agroenergy Laboratory, and the National Nanotechnology Laboratory for Agribusiness (LNNA) for the provision of institutional support and facilities. The graphical schemes are from Servier Medical Art (https://smart.servier.com), licensed under the Creative Commons Attribution 3.0 Unported License Agreement (https://creativecommons.org/licenses/by/3.0/).

Funding

Financial support for this work was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001, grant #88887.360866/2019–00), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grants #2016/10.636–8 and #2020/03259–9), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant #130491/2019–5).

Author information

Authors and Affiliations

Authors

Contributions

Ludimila A. Lodi: writing—review and editing; conceptualization; methodology; data curation; formal analysis; investigation; roles/writing—original draft. Rodrigo Klaic: writing—review and editing; conceptualization; data curation; formal analysis; roles/writing—original draft. Ricardo Bortoletto-Santos: writing—review and editing; formal analysis; roles/writing—original draft. Caue Ribeiro: writing—review and editing; funding acquisition; supervision. Cristiane S. Farinas: writing—review and editing; conceptualization; funding acquisition; supervision.

Corresponding author

Correspondence to Cristiane S. Farinas.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodi, L.A., Klaic, R., Bortoletto-Santos, R. et al. Unveiling the Solubilization of Potassium Mineral Rocks in Organic Acids for Application as K-Fertilizer. Appl Biochem Biotechnol 194, 2431–2447 (2022). https://doi.org/10.1007/s12010-022-03826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03826-7

Keywords

Navigation