Skip to main content
Log in

Hydroxyapatite/Glycyrrhizin/Lithium-Based Metal–Organic Framework (HA/GL/Li-MOF) Nanocomposite as Support for Immobilization of Thermomyces lanuginosus Lipase

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The hydroxyapatite/glycyrrhizin/lithium-based metal–organic framework (HA/GL/Li-MOF) nanocomposites were synthesized via the hydrothermal method in the presence of lecithin and glycyrrhizin. Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) were applied for characterization of the fabricated nanocomposites. The HA/GL/Li-MOF and Li-MOF nanocomposites were employed as support for immobilization of Thermomyces lanuginosus lipase (TLL). The Plackett–Burman and Box-Behnken designs were used for screening and optimizing of variables affecting the immobilization conditions, respectively. The optimum specific activity of immobilized TLL on HA/GL/Li-MOF and Li-MOF nanocomposites (41.8 ± 1.2 U/mg and 39.4 ± 3.1 U/mg, respectively) was predictably determined at support concentration of 0.5 mg/mL, glutaraldehyde concentration of 5 mM, and enzyme activity of 20 U/mg, while the specific activities of TLL@ HA/GL/Li-MOF and TLL@Li-MOF were experimentally found to be 39.5 ± 3.7 U/mg and 38.5 ± 2.3 U/mg, respectively. The stability results showed that the TLL@ HA/GL/Li-MOF has suitable stability against pH and thermal denaturation. However, the immobilized TLL on Li-MOF represented lower stability compared with that of the HA/GL/Li-MOF. The immobilized TLL on HA/GL/Li-MOF maintained near 70% of its original activity after 15 days’ storage and during 5 runs of application. In addition, TLL@HA/GL/Li-MOF exhibited higher enzyme–substrate affinity (Km, 10.1 mM) compared to that of TLL@Li-MOF (Km, 23.4 mM). Therefore, these findings demonstrated the potential use of HA/GL/Li-MOF nanocomposites for enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Kalji, O., Sefidbakht, Y., Nesterenko, A. M., Uskoković, V., & Ranaei-Siadat, S.-O. (2020). Colloidal graphene oxide enhances the activity of a lipase and protects it from oxidative damage: Insights from physicochemical and molecular dynamics investigations. Journal of Colloid and Interface Science, 567, 285–299. https://doi.org/10.1016/j.jcis.2020.02.010

    Article  CAS  PubMed  Google Scholar 

  2. Otari, S. V., Patel, S. K., Kalia, V. C., & Lee, J.-K. (2020). One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. Bioresource Technology, 302, 122887. https://doi.org/10.1016/j.biortech.2020.122887

    Article  CAS  PubMed  Google Scholar 

  3. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33, 435–456. https://doi.org/10.1016/j.biotechadv.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  4. Guisan, J. M., López-Gallego, F., Bolivar, J. M., Rocha-Martín, J., & Fernandez-Lorente, G. (2020). The science of enzyme immobilization. In J. M. Guisan, J. M. Bolivar, F. López-Gallego, & J. Rocha-Martín (Eds.), Immobilization of enzymes and cells (pp. 1–26). Humana Inc.

    Chapter  Google Scholar 

  5. Nematian, T., Shakeri, A., Salehi, Z., & Saboury, A. A. (2020). Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil. Biotechnology for Biofuels, 13, 57. https://doi.org/10.1186/s13068-020-01688-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, M., Wu, H., Li, Z., Wu, K., Jiao, Y., & Zhou, C. (2020). Preparation of reduced graphene oxide porous beads for lipase immobilization and its application for oil adsorption and glycerolysis reaction in situ. Microporous and Mesoporous Materials, 294, 109920. https://doi.org/10.1016/j.micromeso.2019.109920

    Article  CAS  Google Scholar 

  7. Ameri, A., Taghizadeh, T., Talebian-Kiakalaieh, A., Forootanfar, H., Mojtabavi, S., Jahandar, H., Tarighi, S., & Faramarzi, M. A. (2021). Bio-removal of phenol by the immobilized laccase on the fabricated parent and hierarchical NaY and ZSM-5 zeolites. Journal of the Taiwan Institute of Chemical Engineers, 120, 300–312. https://doi.org/10.1016/j.jtice.2021.03.016

    Article  CAS  Google Scholar 

  8. Coutinho, T. C., Tardioli, P. W., & Farinas, C. S. (2020). Hydroxyapatite nanoparticles modified with metal ions for xylanase immobilization. International Journal of Biological Macromolecules, 150, 344–353. https://doi.org/10.1016/j.ijbiomac.2020.02.058

    Article  CAS  PubMed  Google Scholar 

  9. Almulaiky, Y. Q., Khalil, N., El-Shishtawy, R. M., Altalhi, T., Algamal, Y., Aldhahri, M., Al-Harbi, S. A., Allehyani, E. S., Bilal, M., & Mohammed, M. M. (2021). Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. International Journal of Biological Macromolecules, 167, 299–308. https://doi.org/10.1016/j.ijbiomac.2020.11.150

    Article  CAS  PubMed  Google Scholar 

  10. Coutinho, T. C., Tardioli, P. W., & Farinas, C. S. (2020). Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed. Applied Biochemistry and Biotechnology, 190, 270–292. https://doi.org/10.1007/s12010-019-03116-9

    Article  CAS  PubMed  Google Scholar 

  11. Marzadori, C., Miletti, S., Gessa, C., & Ciurli, S. (1998). Immobilization of jack bean urease on hydroxyapatite: Urease immobilization in alkaline soils. Soil Biology & Biochemistry, 30, 1485–1490. https://doi.org/10.1016/S0038-0717(98)00051-0

    Article  CAS  Google Scholar 

  12. Xie, W., & Zang, X. (2017). Covalent immobilization of lipase onto aminopropyl-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil. Food Chemistry, 227, 397–403. https://doi.org/10.1016/j.foodchem.2017.01.082

    Article  CAS  PubMed  Google Scholar 

  13. Ding, Y., Zhang, H., Wang, X., Zu, H., Wang, C., Dong, D., Lyu, M., & Wang, S. (2021). Immobilization of dextranase on nano-hydroxyapatite as a recyclable catalyst. Materials., 14, 130. https://doi.org/10.3390/ma14010130

    Article  CAS  Google Scholar 

  14. Qi, D., Gao, M., Li, X., & Lin, J. (2020). Immobilization of pectinase onto porous hydroxyapatite/calcium alginate composite beads for improved performance of recycle. ACS Omega, 5, 20062–20069. https://doi.org/10.1021/acsomega.0c01625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saire-Saire, S., Garcia-Segura, S., Luyo, C., Andrade, L. H., & Alarcon, H. (2020). Magnetic bio-nanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse. International Journal of Biological Macromolecules, 148, 284–291. https://doi.org/10.1016/j.ijbiomac.2020.01.137

    Article  CAS  PubMed  Google Scholar 

  16. Nadar, S. S., Vaidya, L., & Rathod, V. K. (2020). Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 149, 861–876. https://doi.org/10.1016/j.ijbiomac.2020.01.240

    Article  CAS  PubMed  Google Scholar 

  17. Nadar, S. S., & Rathod, V. K. (2020). Immobilization of proline activated lipase within metal organic framework (MOF). International Journal of Biological Macromolecules, 152, 1108–1112. https://doi.org/10.1016/j.ijbiomac.2019.10.199

    Article  CAS  PubMed  Google Scholar 

  18. Chen, X., Xue, S., Lin, Y., Luo, J., & Kong, L. (2020). Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs. Anal. Chim. Acta. X., 1099, 94–102. https://doi.org/10.1016/j.aca.2019.11.042

    Article  CAS  Google Scholar 

  19. Nadar, S. S., & Rathod, V. K. (2018). Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enyzme and Microbial Technology, 108, 11–20. https://doi.org/10.1016/j.enzmictec.2017.08.008

    Article  CAS  Google Scholar 

  20. Li, Q., Chen, Y., Bai, S., Shao, X., Jiang, L., & Li, Q. (2020). Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis. Colloids and Surfaces. B, Biointerfaces, 188, 110812. https://doi.org/10.1016/j.colsurfb.2020.110812

    Article  CAS  PubMed  Google Scholar 

  21. Cao, Y., Wu, Z., Wang, T., Xiao, Y., Huo, Q., & Liu, Y. (2016). Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal–organic framework material: A biocatalyst for esterification. Dalton Transactions, 45, 6998–7003. https://doi.org/10.1039/C6DT00677A

    Article  CAS  PubMed  Google Scholar 

  22. Yildirim, D., Tükel, S. S., Alptekin, Ö., & Alagöz, D. (2014). Optimization of immobilization conditions of Mucor miehei lipase onto Florisil via polysuccinimide spacer arm using response surface methodology and application of immobilized lipase in asymmetric acylation of 2-amino-1-phenylethanols. Journal of Molecular Catalysis. B, Enzymatic, 100, 91–103. https://doi.org/10.1016/j.molcatb.2013.12.003

    Article  CAS  Google Scholar 

  23. Alagöz, D., Tükel, S. S., & Yildirim, D. (2016). Immobilization of pectinase on silica-based supports: Impacts of particle size and spacer arm on the activity. International Journal of Biological Macromolecules, 87, 426–432. https://doi.org/10.1016/j.ijbiomac.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  24. Ameri, A., Shakibaie, M., Khoobi, M., Faramarzi, M. A., Gholibegloo, E., Ameri, A., & Forootanfar, H. (2020). Optimization of immobilization conditions of Bacillus atrophaeus FSHM2 lipase on maleic copolymer coated amine-modified graphene oxide nanosheets and its application for valeric acid esterification. International Journal of Biological Macromolecules, 162, 1790–1806. https://doi.org/10.1016/j.ijbiomac.2020.08.101

    Article  CAS  PubMed  Google Scholar 

  25. Ameri, A., Shakibaie, M., Khoobi, M., Faramarzi, M. A., Ameri, A., & Forootanfar, H. (2019). Immobilization of thermoalkalophilic lipase from Bacillus atrophaeus FSHM2 on amine-modified graphene oxide nanostructures: Statistical optimization and its application for pentyl valerate synthesis. Applied Biochemistry and Biotechnology, 191, 579–604. https://doi.org/10.1007/s12010-019-03180-1

    Article  CAS  PubMed  Google Scholar 

  26. Ameri, A., Forootanfar, H., Behnam, B., Shakibaie, M., Ameri, A., Daneshpajooh, M., Najafi, A., & Amirheidari, B. (2021). Optimization of immobilization of Pseudomonas cepacia lipase on multiwalled carbon nanotubes functionalized with glycyrrhizin and Tween 80. 3 Biotech., 11, 1–13. https://doi.org/10.1007/s13205-021-02813-9

    Article  Google Scholar 

  27. Asadi, F., Forootanfar, H., & Ranjbar, M. (2020). A facile one-step preparation of Ca10 (PO4) 6 (OH) 2/Li-BioMOFs resin nanocomposites with Glycyrrhiza glabra (licorice) root juice as green capping agent and mechanical properties study. Artificial Cells, Nanomedicine, and Biotechnology, 48, 1331–1339. https://doi.org/10.1080/21691401.2020.1842748

    Article  CAS  PubMed  Google Scholar 

  28. Hasan-Beikdashti, M., Forootanfar, H., Safiarian, M., Ameri, A., Ghahremani, M., Khoshayand, M., & Faramarzi, M. (2012). Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. Journal of the Taiwan Institute of Chemical Engineers, 43, 670–677. https://doi.org/10.1016/j.jtice.2012.03.005

    Article  CAS  Google Scholar 

  29. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  30. Sarkar, C., Chowdhuri, A. R., Garai, S., Chakraborty, J., & Sahu, S. K. (2019). Three-dimensional cellulose-hydroxyapatite nanocomposite enriched with dexamethasone loaded metal–organic framework: A local drug delivery system for bone tissue engineering. Cellulose, 26, 7253–7269. https://doi.org/10.1007/s10570-019-02618-3

    Article  CAS  Google Scholar 

  31. Badoei-Dalfard, A., Karami, Z., & Malekabadi, S. (2019). Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: An efficient nanobiocatalyst for biodiesel production. Bioresource Technology, 278, 473–476. https://doi.org/10.1016/j.biortech.2019.01.050

    Article  CAS  PubMed  Google Scholar 

  32. Heidarizadeh, M., Doustkhah, E., Rostamnia, S., Rezaei, P. F., Harzevili, F. D., & Zeynizadeh, B. (2017). Dithiocarbamate to modify magnetic graphene oxide nanocomposite (Fe3O4-GO): A new strategy for covalent enzyme (lipase) immobilization to fabrication a new nanobiocatalyst for enzymatic hydrolysis of PNPD. International Journal of Biological Macromolecules, 101, 696–702. https://doi.org/10.1016/j.ijbiomac.2017.03.152

    Article  CAS  PubMed  Google Scholar 

  33. Mohammadi, N. S., Khiabani, M. S., Ghanbarzadeh, B., & Mokarram, R. R. (2020). Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. Journal of Biotechnology, 323, 189–202. https://doi.org/10.1016/j.jbiotec.2020.07.002

    Article  CAS  PubMed  Google Scholar 

  34. Syukri, M. S. M., Rahman, R. A., Mohamad, Z., Illias, R. M., Mahmood, N. A. N., & Jaafar, N. R. (2021). Optimization strategy for laccase immobilization on polyethylene terephthalate grafted with maleic anhydride electrospun nanofiber mat. International Journal of Biological Macromolecules, 166, 876–883. https://doi.org/10.1016/j.ijbiomac.2020.10.244

    Article  CAS  Google Scholar 

  35. Asmat, S., Husain, Q., & Azam, A. (2017). Lipase immobilization on facile synthesized polyaniline-coated silver-functionalized graphene oxide nanocomposites as novel biocatalysts: Stability and activity insights. RSC Advances, 7, 5019–5029. https://doi.org/10.1039/c6ra27926k

    Article  CAS  Google Scholar 

  36. Fotiadou, R., Chatzikonstantinou, A. V., Hammami, M. A., Chalmpes, N., Moschovas, D., Spyrou, K., Polydera, A. C., Avgeropoulos, A., Gournis, D., & Stamatis, H. (2021). Green synthesized magnetic nanoparticles as effective nanosupport for the immobilization of lipase: Application for the synthesis of lipophenols. Nanomaterials, 11, 458. https://doi.org/10.3390/nano11020458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamayo-Cabezas, J., & Karboune, S. (2020). Optimizing immobilization and stabilization of feruloyl esterase from Humicola insolens and its application for the feruloylation of oligosaccharides. Process Biochemistry, 98, 11–20. https://doi.org/10.1016/j.procbio.2020.07.009

    Article  CAS  Google Scholar 

  38. Matuoog, N., Li, K., & Yan, Y. (2017). Immobilization of Thermomyces lanuginosus lipase on multi-walled carbon nanotubes and its application in the hydrolysis of fish oil. Mater. Res. Express., 4, 125402. https://doi.org/10.1088/2053-1591/aa9d02

    Article  CAS  Google Scholar 

  39. Lee, J. H., Lee, J. H., Kim, D. S., Yoo, H. Y., Park, C., & Kim, S. W. (2019). Biodiesel production by lipases co-immobilized on the functionalized activated carbon. Bioresource of Technology Report, 7, 100248. https://doi.org/10.1016/j.biteb.2019.100248

    Article  Google Scholar 

  40. Wahab, W. A. A., Karam, E. A., Hassan, M. E., Kansoh, A. L., Esawy, M. A., & Awad, G. E. (2018). Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization. International Journal of Biological Macromolecules, 113, 159–170. https://doi.org/10.1016/j.ijbiomac.2018.02.086

    Article  CAS  PubMed  Google Scholar 

  41. Aybastıer, Ö., & Demir, C. (2010). Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene–divinylbenzene copolymer using response surface methodology. Journal of Molecular Catalysis. B, Enzymatic, 63, 170–178. https://doi.org/10.1016/j.molcatb.2010.01.013

    Article  CAS  Google Scholar 

  42. Sankar, K., & Achary, A. (2020). Bio-ceramic, mesoporous cuttlebone of Sepia officinalis is an ideal support for the immobilization of Bacillus subtilis AKL13 lipase: Optimization, adsorption, thermodynamic and reaction kinetic studies. Chemical Papers, 74, 459–470. https://doi.org/10.1007/s11696-019-00891-x

    Article  CAS  Google Scholar 

  43. Taghizadeh, T., Ameri, A., Talebian-Kiakalaieh, A., Mojtabavi, S., Ameri, A., Forootanfar, H., Tarighi, S., & Faramarzi, M. A. (2021). Lipase@ zeolitic imidazolate framework ZIF-90: A highly stable and recyclable biocatalyst for the synthesis of fruity banana flavour. International Journal of Biological Macromolecules, 166, 1301–1311. https://doi.org/10.1016/j.ijbiomac.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  44. Bi, Y., Wang, Z., Zhang, R., Diao, Y., Tian, Y., & Jin, Z. (2020). Improved catalytic properties of Thermomyces lanuginosus lipase immobilized onto newly fabricated polydopamine-functionalized magnetic Fe3O4 nanoparticles. Processes., 8, 629. https://doi.org/10.3390/pr8050629

    Article  CAS  Google Scholar 

  45. Ashjari, M., Garmroodi, M., Asl, F. A., Emampour, M., Yousefi, M., Lish, M. P., Habibi, Z., & Mohammadi, M. (2020). Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochemistry, 90, 156–167. https://doi.org/10.1016/j.procbio.2019.11.002

    Article  CAS  Google Scholar 

  46. Cipolatti, E. P., de Moreno-Pérez, S., Andrade Souza, L. T., Valério, A., de Guisán, J. M., Araújo, P. H., Sayer, C., de Ninow, J. L., Oliveira, D., & Pessela, B. C. (2015). Synthesis and modification of polyurethane for immobilization of Thermomyces lanuginosus (TLL) lipase for ethanolysis of fish oil in solvent free system. Journal of Molecular Catalysis. B, Enzymatic, 122, 163–169. https://doi.org/10.1016/j.molcatb.2015.09.006

    Article  CAS  Google Scholar 

  47. Ghasemi, S., Heidary, M., Faramarzi, M. A., & Habibi, Z. (2014). Immobilization of lipase on Fe3O4/ZnO core/shell magnetic nanoparticles and catalysis of Michael-type addition to chalcone derivatives. Journal of Molecular Catalysis. B, Enzymatic, 100, 121–128. https://doi.org/10.1016/j.molcatb.2013.12.006

    Article  CAS  Google Scholar 

  48. Bezerra, R. M., Monteiro, R. R., Neto, D. M. A., da Silva, F. F., de Paula, R. C., de Lemos, T. L., Fechine, P. B., Correa, M. A., Bohn, F., & Gonçalves, L. R. (2020). A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme and Microbial Technology, 138, 109560. https://doi.org/10.1016/j.enzmictec.2020.109560

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Research reported in this publication was supported by Elite Researcher Grant Committee under Award number 4000022 from the National Institute for Medical Research Development (NIMAD), Tehran, Iran. This work was financially supported by Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran (Grant number 98000501).

Author information

Authors and Affiliations

Authors

Contributions

Atefeh Ameri carried out the enzyme immobilization procedure, and its optimization as well as characterization of the immobilized enzyme and writing the manuscript. Fahimeh Asadi was involved in support preparation and screened the variables related to the immobilization process. Mojtaba Shakibaie was involved in designing of the experiments and analyzing of data. Alieh Ameri participated in analysis of the obtained results of support and immobilized enzyme characterization. Hamid Forootanfar supervised the study, analyzed the obtained results, and was involved in writing the manuscript. Mehdi Ranjbar was involved in support preparation and its characterization. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hamid Forootanfar or Mehdi Ranjbar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval

The ethics approval Cod is IR.KMU.REC.1398.393 by ethical committee of Kerman University of Medical Sciences.

Consent to Participate

Not applicable.

Consent to Publish

All the authors consented to the publication of this work. The authors all confirm the permission of publication for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameri, A., Asadi, F., Shakibaie, M. et al. Hydroxyapatite/Glycyrrhizin/Lithium-Based Metal–Organic Framework (HA/GL/Li-MOF) Nanocomposite as Support for Immobilization of Thermomyces lanuginosus Lipase. Appl Biochem Biotechnol 194, 2108–2134 (2022). https://doi.org/10.1007/s12010-022-03800-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03800-3

Keywords

Navigation