Skip to main content

Advertisement

Log in

Bio-ceramic, mesoporous cuttlebone of Sepia officinalis is an ideal support for the immobilization of Bacillus subtilis AKL13 lipase: optimization, adsorption, thermodynamic and reaction kinetic studies

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Mesoporous cuttlebone powder of Sepia officinalis (CBP) was characterized and used as matrix for the immobilization of Bacillus subtilis AKL 13 lipase (BsL). Particle size and surface area of the matrix used for enzyme immobilization were 89.95 µm and 1.631 m2 g−1, respectively. Remarkable thermostability (54% of weight loss at 700 °C) of CBP was determined in TGA profile. The lipase immobilization process parameters were sequentially optimized by response surface methodology followed by artificial neural network and genetic algorithm. The maximum lipase loading capacity of CBP was 255 mg g−1 of support. Immobilized lipase (CBP-BsL) showed maximum specific activity of 5808 U mg−1 of protein in p-nitrophenol palmitate hydrolysis. Adsorption isotherm study revealed that the binding of lipase on the surface of CBP was Langmuir and the binding was physical adsorption. CBP-BsL showed lower activation energy (51.4 KJ mol−1) and higher thermal stability with half-lives of 13.3 h at 50 °C. Higher activity retention in nonpolar solvents and 69% of operational stability after 15 cycle of reaction were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

The authors gratefully acknowledge the management of Kamaraj College of Engineering and Technology, Virudhunagar-626001, Tamil Nadu, India, for the support of research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant Achary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, K., Achary, A. Bio-ceramic, mesoporous cuttlebone of Sepia officinalis is an ideal support for the immobilization of Bacillus subtilis AKL13 lipase: optimization, adsorption, thermodynamic and reaction kinetic studies. Chem. Pap. 74, 459–470 (2020). https://doi.org/10.1007/s11696-019-00891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00891-x

Keywords

Navigation